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Canonical inflation

The most minimal model of inflation.


Action: .


Background: .


Equation of motion:


Friedmann equation:  and .


Klein-Gordon equation: .

S =
1
2 ∫ d4x −g [M2

PR − (∂μϕ)2 − 2V(ϕ)]
ds2 = − dt2 + a2(t) dx2 = a2(τ)(−dτ2 + dx2)

·H = −
·ϕ2

2M2
P

H2 =
1

3M2
P ( 1

2
·ϕ2 + V(ϕ))

··ϕ + 3H ·ϕ +
dV
dϕ

= 0



Slow-roll inflation

SR approximation:  and .


Performing SR approximation, the equations of motion become


  and    .


Solution:  (quasi-dS), with domain of conformal time .
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Slow-roll inflation

More systematically, define -th SR parameter:  and  .


Substituting equation of motions:


 ,  , …


SR approximation: .


SR approximation implies quasi-dS, however converse statement is not true.

n ϵn+1 =
·ϵn

ϵnH
ϵ1 = −

·H
H2

ϵ1 =
·ϕ2

2M2
PH2

ϵ2 = 2ϵ1 + 2
··ϕ
·ϕH

|ϵn | ≪ 1



Power spectrum


Δ2
s(k) = [ H2(τ)

8π2M2
Pϵ1(τ) ]

τ=−1/k

ns(k) − 1 =
d log Δ2

s

d log k
∼ 𝒪(ϵ)

Decrease  at late time to amplify the power spectrum on small scales. How to achieve that?ϵ1(τ)



Constraints on power spectrum

Power spectrum is tightly constrained on large scale. However, constraints are very loose on small scale.

Green and Kavanagh (2007.10722)
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Violation of SR approximation
··ϕ + 3H ·ϕ +

dV
dϕ

= 0

SR approximation: 





3H ·ϕ +
dV
dϕ

≈ 0

ϵ1 =
·ϕ2

2M2
PH2

≈
M2

P

2 (
V,ϕ

V )
2

≪ 1

ϵ2 = 2ϵ1 + 2
··ϕ
·ϕH

≪ 1

USR condition:   





··ϕ + 3H ·ϕ = 0 ⟶ ·ϕ ∝ a−3

ϵ1 =
·ϕ2

2M2
PH2

∝ a−6 ≪ 1

ϵ2 = 2ϵ1 + 2
··ϕ
·ϕH

≃ − 6

Inoue and Yokoyama (hep-ph/0104083), Kinney (gr-qc/0503017)



Potential of the inflaton

Ivanov et. al. (PRD 1994)



Evolution of the second SR parameter

• Sharp: step function at both  and  .


• Smooth: continuous function at  .

τ = τs τ = τe

τ > τs



Cosmological perturbations
Small perturbations:


• Inflaton: 


• Spacetime: 


Gauge fixing condition:


• Comoving:  and 


• Flat-slicing:  and 


(Non-linear) gauge transformation:  , 


Compute correlation function of  , then obtain correlation function of .

ϕ(x, t) = ϕ̄(t) + δϕ(x, t)

ds2 = gμνdxμdxν = − N2dt2 + γij(dxi + Nidt)(dxj + Njdt)

δϕ = 0 γij = a2e2ζδij

δϕ ≠ 0 γij = a2δij

ζ = ζn +
1
4

ϵ2ζ2
n +

1
H

·ζnζn + 𝒪(ζ3
n) ζn = −

δϕ
MP 2ϵ1

ζn ζ



Second-order action

Second-order action: 


Mukhanov-Sasaki (MS) variable:  , 





Equation of motion: , 


• SR ( )


• USR (  , )

S(2) = M2
P ∫ dt d3x ϵ1a3 [ ·ζ2 −

1
a2

(∂iζ)2]
v = zζMP z = a 2ϵ1

S(2) =
1
2 ∫ dτ d3x [(v′ )2 − (∂iv)2 +

z′ ′ 

z
v2]

v′ ′ k + (k2 −
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z
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1
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ϵ1, |ϵ2 | , |ϵ3 | ≪ 1

ϵ1, |ϵ3 | ≪ 1 ϵ2 = − 6
v′ ′ k + (k2 −

2
τ2 ) vk = 0



Curvature perturbation

Pure USR inflation ( ) corresponds to  and 





Superhorizon evolution of scale-invariant perturbation even at tree-level.


Transition makes initial condition of the USR period deviates from Bunch-Davies.





Coefficients  and  are obtained by requiring continuity of  and  at the transition.

V(ϕ) = constant 𝒜k = 1 ℬk = 0

lim
k→0

ζk(τ) =
iH

2MP k3ϵ1(τ)
⟶ Δ2

s(k → 0,τ) =
H2

8π2M2
Pϵ1(τ)

∝ a6(τ)

ζk(τ) =
iH

2MP k3ϵ1(τ)
[𝒜ke−ikτ(1 + ikτ) − ℬkeikτ(1 − ikτ)]

𝒜k ℬk ζk(τ) ζ′ k(τ)



Sharp transition



Two-point functions
Requiring continuity of  and  at transition  :


 and  


Power spectrum at the end of inflation: 


Large scale: 


Small scale: 

ζk(τ) ζ′ k(τ) τ = τs

𝒜k = 1 −
3(1 + k2τ2

s )
2ik3τ3

s
ℬk = −

3(1 + ikτs)2

2ik3τ3
s

e−2ikτs
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2π2
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Δ2
s(SR)(k) ≡ Δ2
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H2

8π2M2
Pϵ1(τs)

Δ2
s(PBH) ≈ Δ2

s(SR)(ks)( ke

ks )
6



Higher-point interactions

Taylor expansion of the potential:  ,  , 


In decoupling limit ( ):











Gravitational effects are suppressed by  .

S(n)
δϕ = − ∫ d4x

Vn

n!
(δϕ)n Vn ≡

dnV
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Vn+1 = ·Vn/
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2
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4
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·ϵ2)

MP(a 2ϵ1)3

ϵ1



Bispectrum

Leading interaction:  


Time integral: 


Bispectrum (in-in perturbation theory):


.


Perturbativity: 

H(3)
δϕ = −

1
2

M2
P ∫ d3x ϵ1ϵ′ 2a2ζ′ nζ2

n

∫
0

−∞
dτ ϵ′ 2(τ)f(τ) = Δϵ2[ f(τe) − f(τs)]

⟨⟨ζk1
(τ0)ζk2

(τ0)ζk3
(τ0)⟩⟩ = − 2M2

P ∫
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−∞
dτ ϵ1(τ)ϵ′ 2(τ)a2(τ)Im [ζk1

(τ0)ζk2
(τ0)ζk3

(τ0)ζ*k1
(τ)ζ*k2

(τ)ζ′ *k3
(τ)] + perm

⟨ζζζ⟩
⟨ζζ⟩3/2

≪ 1 ⟶ [Δ2
s(PBH)]

1/2
≪

1
|Δϵ2 |



Bispectrum
Squezeed limit: ,


.


Maldacena’s theorem on squeezed limit of the bispectrum:


,  .

⟨⟨ζk1
(τ0)ζk2

(τ0)ζ−k2
(τ0)⟩⟩ = − C0(k2) |ζk1

(τ0) |2 |ζk2
(τ0) |2

C0(k) = 4M2
PΔϵ2Im { ζ2

k (τ0)
|ζk(τ0) |2 [ϵ1(τe)a2(τe)ζ*k (τe)ζ′ *k (τe) − ϵ1(τs)a2(τs)ζ*k (τs)ζ′ *k (τs)]}

lim
kL→0

⟨⟨ζkL
(τ)ζkS

(τ)ζ−kS
(τ)⟩⟩ = − (ns(kS, τ) − 1) |ζkS

(τ) |2 |ζkL
(τ) |2 ns(k, τ) − 1 =

d log Δ2
s(k, τ)

d log k
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Trispectrum

Total contributions to the trispectrum:


• Exchange diagram with two  vertices 


• -channel: 


• -channel: 


• -channel: 


• Contact diagram with  vertex

H(3)
δϕ

s s = |k1 + k2 |

t t = |k1 + k3 |

u u = |k1 + k4 |

H(4)
δϕ

Kristiano and Yokoyama (in preparation)

 ,


 ,


 .

⟨𝒪(τ)⟩(3) = ⟨𝒪(τ)⟩†
(0,2) + ⟨𝒪(τ)⟩(1,1) + ⟨𝒪(τ)⟩(0,2)

⟨𝒪(τ)⟩(1,1) = ∫
τ

−∞
dτ1 ∫

τ

−∞
dτ2 ⟨H(3)(τ1)�̂�(τ)H(3)(τ2)⟩

⟨𝒪(τ)⟩(0,2) = − ∫
τ

−∞
dτ1 ∫

τ1

−∞
dτ2 ⟨�̂�(τ)H(3)(τ1)H(3)(τ2)⟩

 ⟨𝒪(τ)⟩(4) = 2∫
τ

−∞
dτ1 Im ⟨�̂�(τ)H(4)(τ1)⟩



Smooth transition



Wands duality
z′ ′ 

z
= (aH)2(2 − ϵ1 +

3
2

ϵ2 −
1
2

ϵ1ϵ2 +
1
4

ϵ2
2 +

1
2

ϵ2ϵ3)

Almost constant  





SR: 


USR: 

ϵ2 ⟶ |ϵ3 | ≪ 1

z′ ′ 

z
≃

2
τ2

ϵ1, |ϵ2 | ≪ 1

ϵ1 ≪ 1,ϵ2 ≃ − 6

Dynamical  





SR: 


USR: 


Transition:  

ϵ2 ⟶ |ϵ3 | ∼ 𝒪(1)

z′ ′ 

z
≃

2
τ2

ϵ1, |ϵ2 | ≪ 1

ϵ1 ≪ 1,ϵ2 ≃ − 6

3
2

ϵ2 +
1
4

ϵ2
2 +

·ϵ2

2H
≃ 0



Two-point functions

Comparing power spectrum:
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More on Wands duality

Differential equation: .


Taking time derivative:  .


Prove that  :


.


Therefore in this setup: 


3
2

ϵ2 +
1
4

ϵ2
2 +

·ϵ2

2H
= constant

0 = 2ϵ′ 2 + ϵ′ 2ϵ2 − ϵ′ ′ 2τ

ϵ1(τ)a2(τ)ϵ′ 2(τ) = constant

(ϵ1a2ϵ′ 2)′ = ϵ1a3H (2ϵ′ 2 + ϵ2ϵ′ 2 − ϵ′ ′ 2τ) = 0

H(3)
δϕ =

1
6

M2
P ∫ d3x (a2ϵ1ϵ′ 2)′ ζ3

n = 0

H(4)
δϕ = −

1
24

M2
P ∫ d3x [ 1

aH (ϵ1a2ϵ′ 2)′ ′ − (4 +
3
2

ϵ2) (ϵ1a2ϵ′ 2)′ ] ζ4
n = 0



Bigger picture
Deviation from Wands duality condition generates higher-order correction to the correlation functions.


Confirmed by non-perturbative lattice simulation.


Possible guidance for bootstrap?

Caravano et. al. (2410.23942)



Conclusion and Future Direction
Take home messages:


• Precision cosmology for inflation model with large fluctuations has just begun!


• Leading interactions at decoupling limit come from Taylor expansion of the inflationary potential, which yield 
correlation function that satisfies Maldacena’s theorem.


• Most minimal model: SR  Wands duality phase.


Future directions:


• Bootstrapping USR correlators: perturbation in USR grows as , can we obtain USR correlators from 
dS correlators? Weight shifting operator to  ?


• Bootstrapping cosmology with transition: SR  USR transition makes the mode function during USR does 
not start from Bunch-Davies vacuum. Bootstrapping correlation function with deviation from Bunch-Davies 
initial condition?

→

ζ ∼ τ−3

Δ = − 3

→


