Cosmological correlators in slowroll violating inflation

Jason Kristiano (RESCEU, The University of Tokyo) Work with Jun'ichi Yokoyama

References:

- Phys. Rev. Lett 132, 221003 (2024) [2211.03395]
- Phys. Rev. D 109, 103541 (2024) [2303.00341]
- JCAP 10 (2024) 036 [2405.12145]
- Springer textbook on PBH (invited chapter) [2405.12149]

Cosmological Correlators in Taiwan

Canonical inflation

The most minimal model of inflation.

Action:
$$S = \frac{1}{2} \int d^4x \sqrt{-g} \left[M_{\rm P}^2 R - (\partial_\mu \phi)^2 - 2V(\phi) \right]$$

Background: $ds^2 = -dt^2 + a^2(t) dx^2 = a^2(\tau)(-d\tau^2 + dx^2).$

Equation of motion:

Friedmann equation:
$$\dot{H} = -\frac{\dot{\phi}^2}{2M_{\rm P}^2}$$
 and $H^2 = \frac{1}{3M_{\rm F}^2}$

Klein-Gordon equation: $\ddot{\phi} + 3H\dot{\phi} + \frac{\mathrm{d}V}{\mathrm{d}\phi} = 0.$

Slow-roll inflation

SR approximation:
$$\left| \frac{\ddot{\phi}}{\dot{\phi}H} \right| \ll 1 \text{ and } \epsilon \equiv -\frac{\dot{H}}{H^2} = \frac{1}{2}$$

Performing SR approximation, the equations of motion become

$$H^2 \approx \frac{V(\phi)}{3M_{\rm P}^2} \approx \text{const and } \dot{\phi} \approx -\frac{V_{,\phi}}{3HM_{\rm P}} \longrightarrow \epsilon \approx \frac{M_{\rm P}^2}{2} \left(\frac{V_{,\phi}}{V}\right)^2.$$

Solution: $a(t) \simeq -\frac{1}{H\tau} \propto e^{Ht}$ (quasi-dS), with domain of conformal time $\tau < 0$.

 $rac{\dot{\phi}^2}{2M_{
m P}^2H^2} \ll 1.$

Slow-roll inflation

More systematically, define *n*-th SR parameter: ϵ_{n+1} =

Substituting equation of motions:

$$\epsilon_1 = \frac{\dot{\phi}^2}{2M_{\rm P}^2 H^2} , \epsilon_2$$

SR approximation: $|\epsilon_n| \ll 1$.

SR approximation implies quasi-dS, however converse statement is not true.

$$=rac{\dot{\epsilon}_n}{\epsilon_n H}$$
 and $\epsilon_1 = -rac{\dot{H}}{H^2}$.

$$\frac{\dot{\phi}^2}{M_{\rm P}^2 H^2}$$
, $\epsilon_2 = 2\epsilon_1 + 2\frac{\ddot{\phi}}{\dot{\phi}H}$, ...

Decrease $\epsilon_1(\tau)$ at late time to amplify the power spectrum on small scales. How to achieve that?

Power spectrum

$$\Delta_s^2(k) = \left[\frac{H^2(\tau)}{8\pi^2 M_{\rm P}^2 \epsilon_1(\tau)}\right]_{\tau = -1/k}$$

$$n_s(k) - 1 = \frac{d \log \Delta_s^2}{d \log k} \sim \mathcal{O}(\epsilon)$$

$$k$$

Constraints on power spectrum

Power spectrum is tightly constrained on large scale. However, constraints are very loose on small scale.

Green and Kavanagh (2007.10722)

Violation of SR approximation

SR approximation:
$$3H\dot{\phi} + \frac{dV}{d\phi} \approx 0$$

 $\epsilon_1 = \frac{\dot{\phi}^2}{2M_P^2 H^2} \approx \frac{M_P^2}{2} \left(\frac{V_{,\phi}}{V}\right)^2 \ll 1$
 $\epsilon_2 = 2\epsilon_1 + 2\frac{\ddot{\phi}}{\dot{\phi}H} \ll 1$

Inoue and Yokoyama (hep-ph/0104083), Kinney (gr-qc/0503017)

USR condition: $\ddot{\phi} + 3H\dot{\phi} = 0 \longrightarrow \dot{\phi} \propto a^{-3}$

$$\epsilon_1 = \frac{\dot{\phi}^2}{2M_{\rm P}^2 H^2} \propto a^{-6} \ll 1$$

$$\epsilon_2 = 2\epsilon_1 + 2\frac{\ddot{\phi}}{\dot{\phi}H} \simeq -6$$

Potential of the inflaton

Ivanov et. al. (PRD 1994)

Evolution of the second SR parameter

- Sharp: step function at both $\tau = \tau_s$ and $\tau = \tau_e$.
- Smooth: continuous function at $\tau > \tau_s$.

Cosmological perturbations

Small perturbations:

- Inflaton: $\phi(\mathbf{x}, t) = \overline{\phi}(t) + \delta \phi(\mathbf{x}, t)$
- Spacetime: $ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = -N^2 dt^2 + \gamma_{ii} (dx^i + N^i dt) (dx^j + N^j dt)$

Gauge fixing condition:

- Comoving: $\delta \phi = 0$ and $\gamma_{ii} = a^2 e^{2\zeta} \delta_{ii}$
- Flat-slicing: $\delta \phi \neq 0$ and $\gamma_{ij} = a^2 \delta_{ij}$

(Non-linear) gauge transformation: $\zeta = \zeta_n + \frac{1}{\Delta}\epsilon_2\zeta_n^2 + \frac{1}{\Delta}\epsilon_2\zeta_n^2$

Compute correlation function of ζ_n , then obtain correlation function of ζ .

$$\frac{1}{H}\dot{\zeta}_n\zeta_n + \mathcal{O}(\zeta_n^3), \zeta_n = -\frac{\delta\phi}{M_{\rm P}\sqrt{2\epsilon_1}}$$

Second-order action

Second-order action:
$$S^{(2)} = M_{\rm P}^2 \int dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ \epsilon_1 a^3 \left[\dot{\zeta}^2 - M_{\rm P}^2\right] dt \ d^3x \ dx^3 \ dx$$

Mukhanov-Sasaki (MS) variable: $v=z\zeta M_{\rm P}$, $z=a\sqrt{2\epsilon_1}$

$$S^{(2)} = \frac{1}{2} \int d\tau \ d^3x \left[(v')^2 - (\partial_i v)^2 + \frac{z''}{z} v^2 \right]$$

Equation of motion:
$$v_k'' + \left(k^2 - \frac{z''}{z}\right)v_k = 0, \frac{z''}{z} = (aH)^2 \left(2 - \epsilon_1 + \frac{3}{2}\epsilon_2 - \frac{1}{2}\epsilon_1\epsilon_2 + \frac{1}{4}\epsilon_2^2 + \frac{1}{2}\epsilon_2\epsilon_3\right)$$

• SR (ϵ_1 , $|\epsilon_2|$, $|\epsilon_3| \ll 1$) $v_k'' + \left(k^2\right)$

• USR (ϵ_1 , $|\epsilon_3| \ll 1$, $\epsilon_2 = -6$)

$$-\frac{1}{a^2}(\partial_i\zeta)^2\bigg]$$

$$-\frac{2}{\tau^2}\right)v_k = 0$$

Pure USR inflation ($V(\phi) = \text{constant}$) corresponds to

$$\lim_{k \to 0} \zeta_k(\tau) = \frac{iH}{2M_{\rm P}\sqrt{k^3\epsilon_1(\tau)}} \longrightarrow \Delta_s^2(k \to 0, \tau) = \frac{H^2}{8\pi^2 M_{\rm P}^2\epsilon_1(\tau)} \propto a^6(\tau)$$

Superhorizon evolution of scale-invariant perturbation even at tree-level.

Transition makes initial condition of the USR period deviates from Bunch-Davies.

$$\zeta_{k}(\tau) = \frac{iH}{2M_{\rm P}\sqrt{k^{3}\epsilon_{1}(\tau)}} \left[\mathscr{A}_{k}e^{-ik\tau}(1+ik\tau) - \mathscr{B}_{k}e^{ik\tau}(1-ik\tau) \right]$$

Coefficients \mathscr{A}_k and \mathscr{B}_k are obtained by requiring continuity of $\zeta_k(\tau)$ and $\zeta'_k(\tau)$ at the transition.

Curvature perturbation

o
$$\mathscr{A}_k = 1$$
 and $\mathscr{B}_k = 0$

Sharp transition

Two-point functions

Requiring continuity of $\zeta_k(\tau)$ and $\zeta'_k(\tau)$ at transition $\tau = \tau_s$:

$$\mathscr{A}_{k} = 1 - \frac{3(1 + k^{2}\tau_{s}^{2})}{2ik^{3}\tau_{s}^{3}} \text{ and } \mathscr{B}_{k} = -\frac{3(1 + ik\tau_{s})^{2}}{2ik^{3}\tau_{s}^{3}}e^{-2ik\tau_{s}}$$

Power spectrum at the end of inflation: $\Delta_{s(0)}^2(k) = \frac{k^3}{2\pi^2} |\zeta_k(\tau \to 0)|^2$

Large scale:
$$\Delta_{s(SR)}^2(k) \equiv \Delta_{s(0)}^2(k \ll k_s) = \frac{H^2}{8\pi^2 M_P^2 \epsilon_1 \epsilon_1}$$

Small scale:
$$\Delta_{s(\text{PBH})}^2 \approx \Delta_{s(\text{SR})}^2 (k_s) \left(\frac{k_e}{k_s}\right)^6$$

Higher-point interactions

Taylor expansion of the potential: $S_{\delta\phi}^{(n)} = -\int d^4x \ \frac{V_n}{n!}$

In decoupling limit ($\epsilon_1 \rightarrow 0$):

 $V_2 = -\frac{H^2}{4}$

$$V_3 = -\frac{H^2}{2M_{\rm P}\sqrt{2\epsilon_1}}\epsilon_2\epsilon_3(3+\epsilon_2+\epsilon_3+\epsilon_4) = -\frac{\partial_t(a^3\epsilon_1\dot{\epsilon}_2)}{M_{\rm P}(a\sqrt{2\epsilon_1})^3}$$

Gravitational effects are suppressed by ϵ_1 .

$$(\delta \phi)^n$$
, $V_n \equiv \frac{\mathrm{d}^n V}{\mathrm{d} \phi^n}$, $V_{n+1} = \dot{V}_n / \dot{\phi}$

$$\frac{M_{\rm P}}{\sqrt{2}}\sqrt{\epsilon_1}(6+\epsilon_2)$$

$$\frac{-\epsilon_2}{-\epsilon_2(6+\epsilon_2+2\epsilon_3)}$$

Bispectrum

Leading interaction:
$$H_{\delta\phi}^{(3)} = -\frac{1}{2}M_{\rm P}^2\int d^3x \ \epsilon_1\epsilon_2'a^2\zeta_n'\zeta_n'$$

Time integral:
$$\int_{-\infty}^{0} d\tau \ \epsilon'_{2}(\tau) f(\tau) = \Delta \epsilon_{2}[f(\tau_{e}) - f(\tau_{s})]$$

Bispectrum (in-in perturbation theory):

$$\langle\!\langle \zeta_{\mathbf{k}_{1}}(\tau_{0})\zeta_{\mathbf{k}_{2}}(\tau_{0})\zeta_{\mathbf{k}_{3}}(\tau_{0})\rangle\!\rangle = -2M_{\mathrm{P}}^{2} \int_{-\infty}^{\tau_{0}} \mathrm{d}\tau \ \epsilon_{1}(\tau)\epsilon_{2}'(\tau)a^{2}(\tau) \mathrm{Im}\left[\zeta_{k_{1}}(\tau_{0})\zeta_{k_{2}}(\tau_{0})\zeta_{k_{3}}(\tau_{0})\zeta_{k_{1}}(\tau)\zeta_{k_{2}}^{*}(\tau)\zeta_{k_{3}}^{*}(\tau)\zeta_{k_{$$

Perturbativity:
$$\frac{\langle \zeta \zeta \zeta \rangle}{\langle \zeta \zeta \rangle^{3/2}} \ll 1 \longrightarrow \left[\Delta_{s(\text{PBH})}^2\right]^{1/2} \ll \frac{1}{|\Delta \epsilon_2|}$$

_ =

Bispectrum

Squezeed limit: $\langle\!\langle \zeta_{\mathbf{k}_1}(\tau_0)\zeta_{\mathbf{k}_2}(\tau_0)\zeta_{-\mathbf{k}_2}(\tau_0)\rangle\!\rangle = -C_0(k_2)$

$$C_{0}(k) = 4M_{\rm P}^{2}\Delta\epsilon_{2} \operatorname{Im}\left\{\frac{\zeta_{k}^{2}(\tau_{0})}{|\zeta_{k}(\tau_{0})|^{2}}\left[\epsilon_{1}(\tau_{e})a^{2}(\tau_{e})\zeta_{k}^{*}(\tau_{e})\zeta_{k}^{*}(\tau_{e}) - \epsilon_{1}(\tau_{s})a^{2}(\tau_{s})\zeta_{k}^{*}(\tau_{s})\zeta_{k}^{*}(\tau_{s})\right]\right\}$$

Maldacena's theorem on squeezed limit of the bispectrum:

 $\lim_{k_L \to 0} \left\langle \left\langle \zeta_{\mathbf{k}_L}(\tau) \zeta_{\mathbf{k}_S}(\tau) \zeta_{-\mathbf{k}_S}(\tau) \right\rangle \right\rangle = - \left(n_s(k_S, \tau) - 1 \right) \left| \zeta_{k_S}(\tau) \right\rangle$

)
$$|\zeta_{k_1}(\tau_0)|^2 |\zeta_{k_2}(\tau_0)|^2$$
,

$$|z|^{2} |\zeta_{k_{L}}(\tau)|^{2}, n_{s}(k,\tau) - 1 = \frac{d \log \Delta_{s}^{2}(k,\tau)}{d \log k}$$

Total contributions to the trispectrum:

- Exchange diagram with two $H^{(3)}_{\delta d}$ vertices
 - s-channel: $s = |\mathbf{k}_1 + \mathbf{k}_2|$
 - *t*-channel: $t = |\mathbf{k}_1 + \mathbf{k}_3|$
 - *u*-channel: $u = |\mathbf{k}_1 + \mathbf{k}_4|$
- Contact diagram with $H^{(4)}_{\delta\phi}$ vertex

Kristiano and Yokoyama (in preparation)

Trispectrum

Smooth transition

Wands duality

$$\frac{z''}{z} = (aH)^2 \left(2 - \epsilon_1 + \frac{z}{z}\right)^2 \left(1 - \frac{z}{z}\right)^2 \left(1$$

Almost constant $\epsilon_2 \longrightarrow |\epsilon_3| \ll 1$

$$\frac{z''}{z} \simeq \frac{2}{\tau^2}$$

SR: ϵ_1 , $|\epsilon_2| \ll 1$

USR: $\epsilon_1 \ll 1, \epsilon_2 \simeq -6$

 $-\frac{3}{2}\epsilon_2 - \frac{1}{2}\epsilon_1\epsilon_2 + \frac{1}{4}\epsilon_2^2 + \frac{1}{2}\epsilon_2\epsilon_3 \bigg)$

Dynamical $\epsilon_2 \longrightarrow |\epsilon_3| \sim \mathcal{O}(1)$ $\frac{z''}{z} \simeq \frac{2}{\tau^2}$ SR: ϵ_1 , $|\epsilon_2| \ll 1$ USR: $\epsilon_1 \ll 1, \epsilon_2 \simeq -6$ Transition: $\frac{3}{2}\epsilon_2 + \frac{1}{4}\epsilon_2^2 + \frac{\dot{\epsilon}_2}{2H} \simeq 0$ 2H

Two-point functions

Comparing power spectrum:

More on Wands duality

Differential equation: $\frac{3}{2}\epsilon_2 + \frac{1}{4}\epsilon_2^2 + \frac{\epsilon_2}{2H} = \text{constant.}$

Taking time derivative: $0 = 2\epsilon'_2 + \epsilon'_2\epsilon_2 - \epsilon''_2\tau$.

Prove that $\epsilon_1(\tau)a^2(\tau)\epsilon_2'(\tau) = \text{constant}$:

 $(\epsilon_1 a^2 \epsilon_2')' = \epsilon_1 a^3 H$

Therefore in this setup: $H_{\delta\phi}^{(3)} = \frac{1}{6}M_{\rm P}^2 \left[{\rm d}^3 x \left(a^2\epsilon_1 \epsilon_2' \right)' \zeta_n^3 = 0 \right]$

$$H_{\delta\phi}^{(4)} = -\frac{1}{24}M_{\rm P}^2 \int \mathrm{d}^3x \left[\frac{1}{aH}\left(\epsilon_1 a^2 \epsilon_2'\right)'' - \left(4 + \frac{3}{2}\epsilon_2\right)\left(\epsilon_1 a^2 \epsilon_2'\right)'\right] \zeta_n^4 = 0$$

$$V\left(2\epsilon_2'+\epsilon_2\epsilon_2'-\epsilon_2''\tau\right)=0.$$

Bigger picture

Deviation from Wands duality condition generates higher-order correction to the correlation functions.

Confirmed by non-perturbative lattice simulation.

Possible guidance for bootstrap?

Caravano et. al. (2410.23942)

Conclusion and Future Direction

Take home messages:

- Precision cosmology for inflation model with large fluctuations has just begun!
- correlation function that satisfies Maldacena's theorem.
- Most minimal model: SR \rightarrow Wands duality phase.

Future directions:

- \bullet dS correlators? Weight shifting operator to $\Delta = -3$?
- initial condition?

• Leading interactions at decoupling limit come from Taylor expansion of the inflationary potential, which yield

Bootstrapping USR correlators: perturbation in USR grows as $\zeta \sim \tau^{-3}$, can we obtain USR correlators from

Bootstrapping cosmology with transition: SR \rightarrow USR transition makes the mode function during USR does not start from Bunch-Davies vacuum. Bootstrapping correlation function with deviation from Bunch-Davies

