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Open String Amplitude

= Open String Amplitude: Describes the tree-level, two-two
scattering of open superstrings (o’ = 2 = 1)
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Field Theory Representations
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Figure 1: Field Theory Representation: Poles in all channels 4 contact terms

= Lorentz invariance implies a partial wave expansion of the residues:
p=3 2t
Ress—p M(s, t) = —772[: ce(")Cz 2 <z =1+ s)

D-3
where C, > (z) are the Gegenbauer polynomials in D dimensions.
= The general formula looks like

00 Liax

=23 |5t et e [ S (S5 )

3/12



S-Matrix Bootstrap

Bootstrap Approach: Find the allowed space of scattering

amplitudes by imposing physical constraints.
Wilson Coefficients: Expansion around s+t =0and st =0

./\/l/OW(S7 t) = Wy + Wlo(S + t) + Wohrst + -

Q: In the space of consistent scattering amplitudes that satisfy
duality, is the open superstring amplitude special?

A: Yes, it minimizes the total entanglement generated in the
scattering process.

Measured by ~ —W)j o. [Aoude, Elor, Remmen, Sumensari]
Bootstrap Constraints: In D = 10,

Crossing Symmetry: M(s, t) = M(t,s)

Analyticity: Only simple poles at s = n,Vn € Z>o.

Residues at Poles: Polynomials of order £pma = n — 1.

Fix Wi,0 = ¢(3) and Wo,1 = £((4), i.e. open string values.
Unitarity: At tree-level, Cén) >0

A-Independence: 95 M (s,t) =0, for k € Z>1, A > —1,(s,t) € Dy
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Figure 2: Example of D, we use for bootstrap

5/12



S-Matrix Bootstrap

= Maximize Wy / Minimize Entanglement (via SDPB)

(Nmax = 30,6 = 1079,
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S-Matrix Bootstrap

= Maximize Wy / Minimize Entanglement (via SDPB)
(Nmax = 307 €= 10_91 kmax = 6, )\ S 146)
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Bootstrap using PINNs

= Why do we use PINNs for bootstrap?

= The bootstrap problems we discussed till now and in fact, all
bootstrap problems are either Linear optimization problems, or
Semi-definite optimization problems.

= These can be handled extremely well via traditional methods.

» Caveat: We used ¢ ~ 1072 while imposing the constraint
—e< 3’/{/\/1)\ (s, t, C,E")) <, for (s,t) € Dy and 1 < k < Kpmax

However, truncated to some N,,.x, it is not guaranteed that these
constraints will be satisfied to some ¢ << 1.

= |t is more reasonable to impose ratio constraints

~ Mi(s, 1) OKM (s, t)

— Mi(s, t)

‘1 Mo (5. 1)

= These are non-linear in the parameters cé"). Traditional methods like
SDPB are not useful. This is why we use PINNs.
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Bootstrap using PINNs

= Neural networks: Maps with several tunable parameters. In our case,

NN (£, n, 6;) = ")
= Neuron Input-Output: y = o (Zk’""x j’}/,’(y,iw*l + bj!‘/’)

N VY
(0:,0

Figure 5: Architecture: Input layer with 2 neurons for (¢, n), 2 hidden layers
with 64 neurons, output layer wih 1 neuron for cé"). Every neuron has the
ReLU activation function o(x) = max(0, x). Final layer has the SoftPlus
activation function v(x) = log(1 + €*) for positive cé")s.

Total Parameters = [2(64) + 64] + [64(64) + 64] + [64(1) + 1] = 4417.
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Bootstrap using PINNs

= Neural networks by minimizing a loss function that measure the

violation of constraints.
= We define the following loss function

@)2

5(9JM>=*Wo,o+51(W10*(*C(3))) + B2 (Wo -

+/53* Z

s,t€D)y

= Hyperparameters 3; set the tolerance for constraint violation. Bigger
f; means smaller tolerance = min(EPM) = min (£ (6}))
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Bootstrap using PINNs

= We implement PINN using the Python library PyTorch.

. Al p) — May(s:6)) 2
= Case 1: When L(s,t) = (1 — m) :
« Dy={(s,t)] —55<s<55,-02<t<02, A, =1A, =04}

= Leading Regge Trajectory:

Cél) CI(Z) §3) C§4) C/§5) Céﬁ)
Open String 1 0.0714 | 0.0119 | 0.00289 | 0.000867 | 0.000300
PINN 0.999 | 0.0715 | 0.0121 | 0.00300 | 0.000922 | 0.000332
k 2
- Case 2: When £(s, 1) = T (e 224E0)
= D= {(s, t)\04<s<104 t=10.1,A, = 1}

= Leading Regge Trajectory:

Cél) Cl(z) cf) c§4) Cgs) céﬁ)
Open String 1 0.0714 | 0.0119 | 0.00289 | 0.000867 | 0.000300
PINN 0.998 | 0.0702 | 0.0124 | 0.00341 | 0.000990 | 0.000339

= For open string, at (s, t) = (10.4,10.1), M(s, t) ~ 1.34 x 10° and
OM(s,t) = —2.51. = Only PINN method can work!.
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= We present a new way to set up the numerical S-Matrix bootstrap
using a parametric crossing symmetric dispersion relation A — CSDR.

= We maximize Wy / minimize the first finite moment of the
entangling power (EPM) and find that the optimal solution is an
excellent approximation to the open superstring amplitude.

= We initiate the use of Physics-Informed Neural Networks for the
bootstrap to perform non-linear, constrained optimization.

= We also study closed string-like amplitudes and find Dual resonance
models there also minimize EPM.

THANK YOU
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