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Why de Sitter?

de Sitter (dS) spacetime is a good approximation to inflationary spacetime

⇒ use it as a
testing ground to develop computational tools for theoretical particle physics in the early
universe.
Work in the flat slicing:

ds2 = dt2 − a(t)2dx2 , a(t) ≡ eHt ,

study a very simple QFT model, real, minimally coupled, massless scalar field in dS with a
quartic self-interaction:

S =

∫
d4x
√
−g
[

1

2
gµν∂µφ∂νφ−

κ

4!
φ4

]
.

Observables are in-in correlation functions at equal and late times:

lim
ki/(a(t)H)→0

〈φ(t,k1)...φ(t,kn)〉 .
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Theoretical challenges

Position-space propagator is infrared-divergent in any spacetime dimension d:

〈φ(tx,x)φ(ty,y)〉
∣∣∣
free
∼
∫

dd−1k

kd−1
→∞ , k ≡ |k| .

In momentum space, the IR-divergences show up in loop diagrams, and additionally find
secular logarithms of the form

logn
(

ki
a(t)H

)
already starting at tree-level.
⇒ Standard perturbation theory is ill-defined, it fails due to superhorizon field modes with

k

a(t)
� H , λphys �

1

H
,

which cause strong IR-effects: for interacting fields of mass m2 � H2 a mass scale

m2
dyn ∼

√
κH2

is generated non-perturbatively. This effect is what determines the physical vacuum of the
theory, first understood using Stochastic Inflation [Starobinsky, Yokoyama 1994; Gorbenko, Senatore

2019].
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EFT for superhorizon modes
The wide separation of scales suggests the EFT-framework as the suitable way to handle this:

Soft de Sitter Effective Theory [Cohen, Green 2020; Cohen, Green, Premkumar, Ridgway 2021].
Full-theory field is split up as

φ(t,k) = H
[
ϕ+(t,k) + [a(t)H]−3ϕ−(t,k)

]
︸ ︷︷ ︸

EFT fields, k/Λ(t)<1

+φUV(t,k)x
k/Λ(t)>1

,

for fixed t
Λ(t) = a(t)H

plays the role of the UV-cutoff for the EFT.
The EFT correlators are organized in terms of a small power-counting parameter λ,
parametrically

λ ∼ ki
Λ(t)

� 1 ,

effective fields have a definite power-counting associated to them:

ϕ+ ∼ λ0 , ϕ− ∼ λ3 .

φUV is integrated out, its effects are captured by Wilson coefficients and non-Gaussian initial
conditions (IC’s).
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Matching SdSET to the full theory

To determine the IC’s and Wilson coefficients need to carry out matching computations,
schematically:

lim
ki/(a(t)H)→0

〈φ(t,k1)...φ(t,kn)〉 = Chard × 〈ϕ(t,k1)...ϕ(t,kn)〉EFT .

How do we get the LHS of the equation?
⇒ “Method of Regions” (MoR). Introduced in [Beneke, Smirnov 1997], analytic tool to
compute the asymptotic expansion of integrals in small ratios of external scales. For us:

ki
a(t)H

� 1 ,

or, switching to conformal time variable

η ≡ − 1

aH
∈ (−∞, 0) → −kiη � 1 .

Caveat: For the method to work, need to use an analytic or dimensional regulator.
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The Method of Regions
MoR can be applied to the computation of

lim
−kiη→0

〈φ(η,k1)...φ(η,kn)〉

both at tree- and loop-level.

Need to compute nested time- and momentum integrals of the
form ∫ η

−∞
dη′

∫
dd−1l

(2π)d−1
,

each type of integral can be decomposed into two regions:∫ η

−∞
dη′ =

∫ 0

−∞
dη′
∣∣∣∣
η′�η︸ ︷︷ ︸

early

+

∫ η

−∞
dη′
∣∣∣∣
η′∼η︸ ︷︷ ︸

late

,

∫
dd−1l

(2π)d−1
=

∫
dd−1l

(2π)d−1

∣∣∣∣
l�ki︸ ︷︷ ︸

hard

+

∫
dd−1l

(2π)d−1

∣∣∣∣
l∼ki︸ ︷︷ ︸

soft

.

In each region can expand the integrand in the quantities which are small, sum of all regions
reproduces expansion of the full result [Beneke, Hager, AFS 2023].
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Back to SdSET

MoR also informs the structure of SdSET and offers guidance when performing matching
computations:

I Early-time regions: subhorizon evolution of field modes, give rise to the IC’s in SdSET.

I Hard-momentum regions: short-distance fluctuations, give rise to the Wilson coeff. in
SdSET.

Our work (in progress): defining a rigorous regularization & renormalization scheme for
SdSET, carrying out matching computations of IC’s and Wilson coefficients up to one-loop,
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Physical picture for late-time correlators

lim
ki/(a(t)H)→0

〈φ(t,k1)...φ(t,kn)〉 .

tH

<latexit sha1_base64="y5/F3z/J0EZONGy3VrWuFQnfEa4=">AAAB9XicbVC7TsNAEFyHVwivACXNiQiJKrJRJKCLoEkZBHlISRSdL5twyvmhuzUosvIJtFDRIVq+h4J/wTYuIGGq0cyudnbcUElDtv1pFVZW19Y3ipulre2d3b3y/kHbBJEW2BKBCnTX5QaV9LFFkhR2Q43ccxV23Ol16nceUBsZ+Hc0C3Hg8Ykvx1JwSqRbGjaG5YpdtTOwZeLkpAI5msPyV38UiMhDn4TixvQcO6RBzDVJoXBe6kcGQy6mfIK9hPrcQzOIs6hzdhIZTgELUTOpWCbi742Ye8bMPDeZ9Djdm0UvFf/zehGNLwax9MOI0BfpIZIKs0NGaJl0gGwkNRLxNDky6TPBNSdCLRkXIhGjpJRS0oez+P0yaZ9VnVr18qZWqV/lzRThCI7hFBw4hzo0oAktEDCBJ3iGF+vRerXerPef0YKV7xzCH1gf39OskkQ=</latexit>

ki/⇤(t) > 1

<latexit sha1_base64="99H7gFc02Ex4cpXqwpUFSFRcfxg=">AAACBHicbVC7TgJBFJ3FF+Jr1dJmIjHBBncNidoYoo2FBSbySICQu8MFJ8w+MnOXhGxo/QpbreyMrf9h4b+4IIWCpzo5557ce48XKWnIcT6tzNLyyupadj23sbm1vWPv7tVMGGuBVRGqUDc8MKhkgFWSpLARaQTfU1j3BtcTvz5EbWQY3NMowrYP/UD2pABKpY5tDzrypHWbBrpQoONLt2PnnaIzBV8k7ozk2QyVjv3V6oYi9jEgocCYputE1E5AkxQKx7lWbDACMYA+NlMagI+mnUwvH/Oj2ACFPELNpeJTEX8nEvCNGfleOukDPZh5byL+5zVj6p23ExlEMWEgJotIKpwuMkLLtBLkXamRCCaXI5cBF6CBCLXkIEQqxmlHubQPd/77RVI7Lbql4sVdKV++mjWTZQfskBWYy85Ymd2wCqsywYbsiT2zF+vRerXerPef0Yw1y+yzP7A+vgG4pJcP</latexit>

ki/⇤(t) < 1

<latexit sha1_base64="lCjL16x/vYpFG0ODVPYdlp4F9So=">AAACBHicbVC7TgJBFJ3FF+Jr1dJmIjHBBncNiZpYEG0sLDCRRwKE3B0uOGH2kZm7JGRD61fYamVnbP0PC//FBSkUPNXJOffk3nu8SElDjvNpZZaWV1bXsuu5jc2t7R17d69mwlgLrIpQhbrhgUElA6ySJIWNSCP4nsK6N7ie+PUhaiPD4J5GEbZ96AeyJwVQKnVse9CRJ63bNNCFAh1fuh077xSdKfgicWckz2aodOyvVjcUsY8BCQXGNF0nonYCmqRQOM61YoMRiAH0sZnSAHw07WR6+ZgfxQYo5BFqLhWfivg7kYBvzMj30kkf6MHMexPxP68ZU++8ncggigkDMVlEUuF0kRFappUg70qNRDC5HLkMuAANRKglByFSMU47yqV9uPPfL5LaadEtFS/uSvny1ayZLDtgh6zAXHbGyuyGVViVCTZkT+yZvViP1qv1Zr3/jGasWWaf/YH18Q21hJcN</latexit>

�

<latexit sha1_base64="ZJ/Ms0giR/0Lbp48JH3fOESdfy4=">AAAB9nicbVC7TsNAEDyHVwivACXNiQiJKrIREtBF0FAGiTykxIrOl01yyvl8ulsjIiu/QAsVHaLldyj4F2zjAhKmGs3samcn0FJYdN1Pp7Syura+Ud6sbG3v7O5V9w/aNooNhxaPZGS6AbMghYIWCpTQ1QZYGEjoBNObzO88gLEiUvc40+CHbKzESHCGmdTXEzGo1ty6m4MuE68gNVKgOah+9YcRj0NQyCWztue5Gv2EGRRcwrzSjy1oxqdsDL2UKhaC9ZM865yexJZhRDUYKiTNRfi9kbDQ2lkYpJMhw4ld9DLxP68X4+jST4TSMYLi2SEUEvJDlhuRlgB0KAwgsiw5UKEoZ4YhghGUcZ6KcdpKJe3DW/x+mbTP6t55/eruvNa4LpopkyNyTE6JRy5Ig9ySJmkRTibkiTyTF+fReXXenPef0ZJT7BySP3A+vgHEYZLQ</latexit>

�

<latexit sha1_base64="ZJ/Ms0giR/0Lbp48JH3fOESdfy4=">AAAB9nicbVC7TsNAEDyHVwivACXNiQiJKrIREtBF0FAGiTykxIrOl01yyvl8ulsjIiu/QAsVHaLldyj4F2zjAhKmGs3samcn0FJYdN1Pp7Syura+Ud6sbG3v7O5V9w/aNooNhxaPZGS6AbMghYIWCpTQ1QZYGEjoBNObzO88gLEiUvc40+CHbKzESHCGmdTXEzGo1ty6m4MuE68gNVKgOah+9YcRj0NQyCWztue5Gv2EGRRcwrzSjy1oxqdsDL2UKhaC9ZM865yexJZhRDUYKiTNRfi9kbDQ2lkYpJMhw4ld9DLxP68X4+jST4TSMYLi2SEUEvJDlhuRlgB0KAwgsiw5UKEoZ4YhghGUcZ6KcdpKJe3DW/x+mbTP6t55/eruvNa4LpopkyNyTE6JRy5Ig9ySJmkRTibkiTyTF+fReXXenPef0ZJT7BySP3A+vgHEYZLQ</latexit>

�

<latexit sha1_base64="ZJ/Ms0giR/0Lbp48JH3fOESdfy4=">AAAB9nicbVC7TsNAEDyHVwivACXNiQiJKrIREtBF0FAGiTykxIrOl01yyvl8ulsjIiu/QAsVHaLldyj4F2zjAhKmGs3samcn0FJYdN1Pp7Syura+Ud6sbG3v7O5V9w/aNooNhxaPZGS6AbMghYIWCpTQ1QZYGEjoBNObzO88gLEiUvc40+CHbKzESHCGmdTXEzGo1ty6m4MuE68gNVKgOah+9YcRj0NQyCWztue5Gv2EGRRcwrzSjy1oxqdsDL2UKhaC9ZM865yexJZhRDUYKiTNRfi9kbDQ2lkYpJMhw4ld9DLxP68X4+jST4TSMYLi2SEUEvJDlhuRlgB0KAwgsiw5UKEoZ4YhghGUcZ6KcdpKJe3DW/x+mbTP6t55/eruvNa4LpopkyNyTE6JRy5Ig9ySJmkRTibkiTyTF+fReXXenPef0ZJT7BySP3A+vgHEYZLQ</latexit>

�

<latexit sha1_base64="ZJ/Ms0giR/0Lbp48JH3fOESdfy4=">AAAB9nicbVC7TsNAEDyHVwivACXNiQiJKrIREtBF0FAGiTykxIrOl01yyvl8ulsjIiu/QAsVHaLldyj4F2zjAhKmGs3samcn0FJYdN1Pp7Syura+Ud6sbG3v7O5V9w/aNooNhxaPZGS6AbMghYIWCpTQ1QZYGEjoBNObzO88gLEiUvc40+CHbKzESHCGmdTXEzGo1ty6m4MuE68gNVKgOah+9YcRj0NQyCWztue5Gv2EGRRcwrzSjy1oxqdsDL2UKhaC9ZM865yexJZhRDUYKiTNRfi9kbDQ2lkYpJMhw4ld9DLxP68X4+jST4TSMYLi2SEUEvJDlhuRlgB0KAwgsiw5UKEoZ4YhghGUcZ6KcdpKJe3DW/x+mbTP6t55/eruvNa4LpopkyNyTE6JRy5Ig9ySJmkRTibkiTyTF+fReXXenPef0ZJT7BySP3A+vgHEYZLQ</latexit>

t

<latexit sha1_base64="azXWOy/nr2pPwAxbGxqHCJxX1iw=">AAAB83icbVC7TsNAEDyHVwivACXNiQiJKrJRJKCLoKFMJPKQEis6XzbhlPPZuttDiqx8AS1UdIiWD6LgX7CNC0iYajSzq52dIJbCoOt+OqW19Y3NrfJ2ZWd3b/+genjUNZHVHDo8kpHuB8yAFAo6KFBCP9bAwkBCL5jdZn7vEbQRkbrHeQx+yKZKTARnmEptHFVrbt3NQVeJV5AaKdAaVb+G44jbEBRyyYwZeG6MfsI0Ci5hURlaAzHjMzaFQUoVC8H4SR50Qc+sYRjRGDQVkuYi/N5IWGjMPAzSyZDhg1n2MvE/b2BxcuUnQsUWQfHsEAoJ+SHDtUgbADoWGhBZlhyoUJQzzRBBC8o4T0WbVlJJ+/CWv18l3Yu616hftxu15k3RTJmckFNyTjxySZrkjrRIh3AC5Ik8kxfHOq/Om/P+M1pyip1j8gfOxzeELZGJ</latexit>

SdSET-regime

<latexit sha1_base64="oXwyvv6ufUB+yrcwEAAzYBwIoEw=">AAACCXicbVDLSsNAFJ3UV62vqLhyM1gEN5ZECuquKILLSp/QhjKZ3tahM0mYuRFL6Bf4FW515U7c+hUu/BfT2IVWz+pwzr3cc48fSWHQcT6s3MLi0vJKfrWwtr6xuWVv7zRNGGsODR7KULd9ZkCKABooUEI70sCUL6Hljy6nfusOtBFhUMdxBJ5iw0AMBGeYSj17r4twj1oltX7tqn6sYSgUTHp20Sk5Gehf4s5IkcxQ7dmf3X7IYwUBcsmM6bhOhF7CNAouYVLoxgYixkdsCJ2UBkyB8ZIs/oQexoZhSCPQVEiaifBzI2HKmLHy00nF8NbMe1PxP68T4+DMS0QQxQgBnx5CISE7ZLgWaS9A+0IDIpsmByoCyplmiKAFZZynYpwWVUj7cOe//0uaJyW3XDq/KRcrF7Nm8mSfHJAj4pJTUiHXpEoahJOEPJIn8mw9WC/Wq/X2PZqzZju75Bes9y9e/ppP</latexit>

subhorizon evolution

<latexit sha1_base64="LGwFjUK/DaXN5ppGWx2AJk82NtQ=">AAACEXicbVC7SgNBFJ31GeMrainCYBCswq4E1C5oYxnBRCFZwuzkqoOzM8vMnWBcUvkJfoWtVnZi6xdY+C/urik0eqrDOfdy7zlRIoVF3//wpqZnZufmSwvlxaXlldXK2nrbamc4tLiW2lxEzIIUClooUMJFYoDFkYTz6OY4988HYKzQ6gyHCYQxu1LiUnCGmdSrbHURbtHEqXXRtTbiTisKAy1dbo96lapf8wvQvyQYkyoZo9mrfHb7mrsYFHLJrO0EfoJhygwKLmFU7joLCeM37Ao6GVUsBhumRYwR3XGWoaYJGCokLUT4uZGy2NphHGWTMcNrO+nl4n9ex+HlQZgKlTgExfNDKCQUhyw3IusHaF8YQGT550CFopwZhghGUMZ5JrqssHLWRzCZ/i9p79WCeu3wtF5tHI2bKZFNsk12SUD2SYOckCZpEU7uySN5Is/eg/fivXpv36NT3nhng/yC9/4FNceerg==</latexit>

ki/(a(t)H) > 1

<latexit sha1_base64="0bZiDqwVCLs92MXGHA4nhyCOQk0=">AAAB/3icbVC7TgJBFJ3FF+ILtbSZSEygwV1DojaGaEOJiTwS2JC7wwUnzD6cuWtCNhR+ha1WdsbWT7HwX1yQQtFTnZxzb+65x4uUNGTbH1ZmaXlldS27ntvY3Nreye/uNU0Ya4ENEapQtz0wqGSADZKksB1pBN9T2PJGV1O/dY/ayDC4oXGErg/DQA6kAEold9STx0UoUqlWunB6+YJdtmfgf4kzJwU2R72X/+z2QxH7GJBQYEzHsSNyE9AkhcJJrhsbjECMYIidlAbgo3GTWegJP4oNUMgj1FwqPhPx50YCvjFj30snfaBbs+hNxf+8TkyDMzeRQRQTBmJ6iKTC2SEjtEzbQN6XGolgmhy5DLgADUSoJQchUjFO68mlfTiL3/8lzZOyUymfX1cK1ct5M1l2wA5ZkTnslFVZjdVZgwl2xx7ZE3u2HqwX69V6+x7NWPOdffYL1vsXMPOVHQ==</latexit>

ki/(a(t)H) < 1

<latexit sha1_base64="ajTpPmDPvqKoncdaHZAQNgR5vAE=">AAAB/3icbVC7TgJBFJ3FF+ILtbSZSEygwV1DoiYWRBtKTOSRwIbcHS44YfbhzF0TsqHwK2y1sjO2foqF/+KCFIqe6uSce3PPPV6kpCHb/rAyS8srq2vZ9dzG5tb2Tn53r2nCWAtsiFCFuu2BQSUDbJAkhe1II/iewpY3upr6rXvURobBDY0jdH0YBnIgBVAquaOePC5CkUq10oXTyxfssj0D/0ucOSmwOeq9/Ge3H4rYx4CEAmM6jh2Rm4AmKRROct3YYARiBEPspDQAH42bzEJP+FFsgEIeoeZS8ZmIPzcS8I0Z+1466QPdmkVvKv7ndWIanLmJDKKYMBDTQyQVzg4ZoWXaBvK+1EgE0+TIZcAFaCBCLTkIkYpxWk8u7cNZ/P4vaZ6UnUr5/LpSqF7Om8myA3bIisxhp6zKaqzOGkywO/bIntiz9WC9WK/W2/doxprv7LNfsN6/AC3TlRs=</latexit>

I Start at t = −∞, subhorizon
evolution.

I Horizon crossing at tH ,
where

ki
a(tH)H

∼ 1 .

I Superhorizon evolution,
correlator measured at fixed
time t.
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