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Work in the flat slicing:

ds® = dt? —a(t)?dz?, a(t) =t

study a very simple QFT model, real, minimally coupled, massless scalar field in dS with a
quartic self-interaction:
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Observables are in-in correlation functions at equal and late times:
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= Standard perturbation theory is ill-defined, it fails due to superhorizon field modes with

k 1
N H A S I7
ay ST e >

which cause strong IR-effects: for interacting fields of mass m? < H? a mass scale
2 2
Mdyn ~ \/EH
is generated non-perturbatively. This effect is what determines the physical vacuum of the

theory, first understood using Stochastic Inflation [Starobinsky, Yokoyama 1994; Gorbenko, Senatore
2019].
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¢uyv is integrated out, its effects are captured by Wilson coefficients and non-Gaussian initial
conditions (IC's).
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Caveat: For the method to work, need to use an analytic or dimensional regulator.
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In each region can expand the integrand in the quantities which are small, sum of all regions
reproduces expansion of the full result [Beneke, Hager, AFS 2023].
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» Early-time regions: subhorizon evolution of field modes, give rise to the IC's in SASET.
» Hard-momentum regions: short-distance fluctuations, give rise to the Wilson coeff. in
SdSET.

Our work (in progress): defining a rigorous regularization & renormalization scheme for
SdSET, carrying out matching computations of IC's and Wilson coefficients up to one-loop,
understand rigorously how the non-perturbative stochastic results are reproduced by SdSET,
and how the EFT allows us to systematically compute corrections to them.

Thank you for your attention!
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Physical picture for late-time correlators

lim
k;/(a(t)H)—0

(p(t,k1)...0(t, kn)) .

» Start at ¢ = —oo, subhorizon
evolution.

» Horizon crossing at tg,
where

» Superhorizon evolution,
correlator measured at fixed
t time t.
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