


The Double Copy: A Duality for Particles and Gravity

Kymani Armstrong-Williams

Centre for Theoretical Physics, Queen Mary University of London

apw796@qmul.ac.uk

Introduction

- Theories of particle physics (such as the standard model) are best described by a special type of quantum field theory called *non-abelian gauge theories*.
- Recently, a new relationship between scattering amplitudes for nonabelian gauge theories and gravity has been discovered, known as the <u>Double Copy</u> (Bern, Carrasco, and Johansson).
- The Double Copy has allowed us to calculate previously unobtainable scattering amplitudes results in gravity, by "building" them out of analogous results in non-abelian gauge theories. (used as a tool in *gravitational scattering problems and gravitational waveform corrections*)

Weyl Double Copy in Practice

The Double Copy also exists at the level of *classical physics* for **certain exact** solutions between **General Relativity** and **Classical** Non-abelian Gauge theories (e.g *Yang-Mills Theory*) (*Luna, Monteiro, Nicholson, O'Connell, White*).

For vacuum solutions in General Relativity that are of Petrov type **D** or **N**, we can express them in terms of analogous solutions in electromagnetism: (*Nicholson, O'Connell, Godazgar, Godazgar, Peinador Veiga, Pope*)

Gravity
$$\Psi_{ABCD} = \frac{\Phi_{(AB}\Phi_{CD)}}{\phi}$$
 Electromagnetism

 ϕ is some scalar which is a harmonic function.

Weyl Double Copy with Sources

The Weyl Double Copy has now been extended to work with nonvacuum solutions for Einstein-Maxwell Gravity. (KAW, Moynihan, White, Manton, Easson, Svesko)

These results were derived using methods inspired by methods from Twistor Theory and Quantum Field Theory. (KAW, Moynihan, White)

Weyl Double Copy with Sources

For scalar fields which admit radial power like solutions $\phi^{(n)} = \frac{1}{r^n}$:

Gravity
$$\Psi_{ABCD} = \sum_{n=1}^{m} \frac{1}{\phi^{(n)}} \Phi^{(n)}{}_{(AB} \Phi^{(n)}{}_{CD)}$$
 Electromagnetism

Where for n > 1:

$$\partial^{\mu} F^{(n)}{}_{\mu\nu} = j^{(n)}{}_{\nu}$$

$$\partial^2 \phi^{(n)} = \rho_s^{(n)}$$

Conclusions and Open Questions

- The Double Copy is a duality between Non-abelian Gauge Theories and Gravity for both scattering amplitudes in quantum field theory and exact solutions in Classical Physics.
- The Classical Double Copy has been recently extended to work in nonvacuum solutions (Einstein-Maxwell Gravity).
- Can we find (Classical) Double Copies for more exotic theories (CFT, AdS, Supergravity, condensed matter, de sitter, cosmology)?
- The Double Copy has some relation to new mysterious structures in gauge theory known as *Kinematic Algebras.* By studying kinematic algebras, what else can we learn ?