The Cosmological CPT Theorem

Harry Goodhew

December 2, 2024

Based on 2408.17406 with Ayngaran Thavanesan and Aron Wall

CPT

Charge Conjugation (Replace Particles with Anti-Particles) CPT Time Reversal

 CRT symmetry is guaranteed in any theory that is both Lorentz Invariant and Unitary

Lorentz Invariance

Unitarity

Accidental Unitarity

We can now make converse statements

- Lorentz Invariance + Unitarity \rightarrow CRT
- ▶ **CRT** + Lorentz Invariance → Reflection Reality ≠ Unitarity
- **CRT** + Unitarity \rightarrow 180° Rotation \neq Lorentz Invariance

Accidental Unitarity

- We can now make converse statements
 - Lorentz Invariance + Unitarity \rightarrow CRT
 - CRT + Lorentz Invariance → Reflection Reality ≠ Unitarity
 - **CRT** + Unitarity \rightarrow 180° Rotation \neq Lorentz Invariance
- However, perturbations around a Unitary theory will remain Unitary provided they are Reflection Real

Cosmological CPT

- Expansion breaks time reversal in a single Poincaré patch
- Global dS inherits the embedding space symmetries which map between 2 patches
- Spacetime symmetries convert this into a local CRT symmetry

Symmetries

Consider the 180° Euclidean rotation we used previously

Bunch-Davies condition: $\mathcal{O}^-(-\eta,-{\sf x})=\mathcal{O}^+(-\eta,-{\sf x})$

Similarly, consider the CRT transformation

Relating the Patches

- Analytically continuing t in P^+ does not give P^-
- ▶ An extra complex Weyl transformation can relate P^+ and P^-

The Cosmological CPT Theorem

- To fully exploit these results we need an observable
- Here we deal with the wavefunction of the universe coefficients, evaluated on the future boundary

$$\Psi[\phi;\eta=0] = \exp\left[-\sum_{n=2}^{\infty} \int \prod_{a=1}^{n} d^{d} k_{a} \phi_{k_{a}} \psi_{n}(\mathbf{k}) \hat{\delta}^{d} \left(\sum_{a} k_{a}\right)\right]$$

These obey relationships which we label according to the symmetries:

- **CRT**:
$$\psi_n^*(\mathbf{k}) = e^{i\pi[(d+1)(L-1)-\sum_{\alpha}(\Delta_{\alpha}-d)]}\psi_n(\mathbf{k})$$

- \mathbf{D}^{\pm} : $\psi_n(\mathbf{k}) = e^{\mp i\pi[d+\sum_{\alpha}(\Delta_{\alpha}-d)]}\psi_n(\mathbf{k})$

We can combine these together:

-
$$\mathbf{D}^- \cdot \mathbf{CPT}$$
: $\psi_n^*(\mathbf{k}) = e^{i\pi((d+1)L-1)}\psi_n(e^{-i\pi}\mathbf{k})$

The Cosmological CPT Theorem

- To fully exploit these results we need an observable
- Here we deal with the wavefunction of the universe coefficients, evaluated on the future boundary

$$\Psi[\phi;\eta=0] = \exp\left[-\sum_{n=2}^{\infty} \int \prod_{a=1}^{n} d^{d} k_{a} \phi_{k_{a}} \psi_{n}(\mathbf{k}) \hat{\delta}^{d} \left(\sum_{a} k_{a}\right)\right]$$

These obey relationships which we label according to the symmetries:

- **CRT**:
$$\psi_n^*(\mathbf{k}) = e^{i\pi[(d+1)(L-1)-\sum_{\alpha}(\Delta_{\alpha}-d)]} \psi_n(\mathbf{k})$$

- \mathbf{D}^{\pm} : $\psi_n(\mathbf{k}) = e^{\mp i\pi[d+\sum_{\alpha}(\Delta_{\alpha}-d)]} \psi_n(\mathbf{k})$

We can combine these together:

- **RR**:
$$\psi_n^*(\mathbf{k}) = e^{i\pi((d+1)L-1)}\psi_n(e^{-i\pi}\mathbf{k})$$

Conclusions

- There exists a group structure describing the relationship between CPT, Lorentz Invariance and Unitarity in both flat space and de Sitter
- At the boundary of inflation CRT symmetry fixes the phase of the wavefunction coefficients
- This is particularly interesting in the search for parity violation which depends exclusively on the imaginary part of the wavefunction coefficient
- Thank you for listening