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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.
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 R2 inflation
- (one of) the first, the most elegant (one-parameter) and the best-fit 


[Maggiore 2018]

Starobinsky (1980, 1984)
2.1 The R

2
inflationary background

Let us start with a brief review of the slow-roll picture in the R
2 inflation model. More

details related to the conformal transformation of the metric can be found in Appendix A.
The action relevant to our study is given by:
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where RJ (RE) is the Ricci scalar in the Jordan (Einstein) frame constructed via the metric

g
J
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the inflaton � is canonically normalized in the Einstein frame (2.2). Note that (@�)2
E

⌘
g
µ⌫

E
@µ�@⌫�. The mass scale M controls the Hubble scale of inflation H in the Einstein frame

and Lmatter can include all kinds of matter fields during inflation. � is also known as the
“scalaron,” which can be viewed as the longitudinal degree of freedom of the gravitational
sector in the higher-order extension of the Einstein’s field equation [71, 72].

It is straightforward to compute observables of the R
2 inflation in the Einstein frame

based on the scalaron potential
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4
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2

✓
1� e

�
q

2
3

�
MP

◆2

. (2.3)

The slow-roll parameters of the R
2 model can be obtained from U(�). For example, the first

slow-roll parameter reads
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One can check that the plateau region of the potential U(�) for realizing the slow-roll dynamics
(✏U ⌧ 1) is in the limit of �/MP � 1, which implies that the R2 model should be cast into the
“large-field” inflation scenario. For a given epoch in terms of the e-folding number N ⌘ ln a
during inflation, the corresponding scalaron value can be obtained via the formula

�

MP

⇡
r

3

2
ln

✓
4

3
|�N |

◆
, (2.5)

where �N = Nend �N is the number of e-folds from the given epoch to the end of inflation.
This formula allows us to express ✏U as a function of �N .

The most important thing to be outlined here is that: as long as we work out the slow-roll
dynamics of the R

2 model in the Einstein frame (2.2), the matter sector inevitably receives an
universal exponential-type coupling with the inflaton � invoked by the conformal tranforma-
tion of the metric. As pointed out in [34], large-field inflation with such an exponential-type
coupling can introduce mild, yet non-negligible, scale dependence to the equation of motion
of a matter field, modifying solutions of the quantum mode fluctuations from the standard
cases with the dilatation symmetry.

To see more explicitly, let us consider as a typical example, Lmatter = �1

2
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J
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is a canonical scalar in the Jordan frame (2.1), where (@�)2
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Figure 8. The evolution of the scalaron � as function of the e-folding number N in R
2 inflation

based on the potential (2.3). The solid line shows the numerical solution from field equations without
imposing any slow-roll conditions. The dashed line is the analytic approximation given by (2.5).

For the R
2 model of inflation (2.1), we have the specific form

f(�) = �+
�
2

6M2
, � = 3M2(⌦2 � 1). (A.8)

This leads to the slow-roll potential of � in the Einstein frame as (2.3) according to

U(�) = �M
2

P

2
⌦�4

W (⌦) =
3

4
M

2

PM
2
�
1� ⌦�2

�2
, (A.9)

with ⌦(�) = e
�/(

p
6MP ). In terms of the dimensionless parameter x ⌘

q
2

3

�

MP
, one can obtain

the slow-roll parameters from the potential
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For a given value of �, the corresponding e-folding number N = ln a to the end of inflation
can be estimated from [94]:

�N ⌘ |N �Nend| ⇡
1

M
2

P

Z
�

�end

d�1

U(�1)

U�(�1)
⇡ 3

4
e

q
2
3

�
MP . (A.12)

This estimation can be translated into the useful relation

�

MP

=

r
3

2
ln

✓
4

3
�N

◆
. (A.13)

In Figure 8, we compare this analytic approximation with the numerical solution of the
scalaron dynamics �(�N) in the potential (2.3) without imposing any slow-roll conditions.
Assuming that the slow-roll phase ends around ✏U = 1, which indicates �end/MP ⇠ 1, we
confirm that (A.13) is a good approximation for the epoch of inflation (�60 < N < �40)
considered in this work.
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FIG. 3. The shape function (18) from the process (16). In
both panels we take m⇤ = µ = 3H and �3 = H. The gray
shades indicate the expected frequency ⌫µ =

p
m

2
⇤ + µ2 for

constant mass in the squeezed limit. The blue and red curves
show the signals from time-dependent masses, in which both
the amplitude and the frequency of the oscillations change
visibly with k1/k3.

and its size has a fixed scaling with the momentum ratio,
characterized by the power law (k3/k1)1/2.

For our case where the mass has a weak time de-
pendence, we can still use (19), but this time evaluate
m = m(⌧) at the saddle point ⌧ ' �⌫/(2k1) of the in-
tegrand ⇠ e±2ik1⌧ (�⌧)±i⌫ where the signal receives most
contribution from the integral (17). Consequently, the
time dependence of m is translated to a scale dependence
of ⌫ in (19), which appears in both the signal frequency
and in the overall size, and this immediately leads to one
of the main results of this work: The cosmological collider
signal from a time-dependent mass has scale-dependent
oscillation frequency, and its overall size scales with k3/k1
di↵erently from the power law (k3/k1)1/2 for a constant
mass. The deviation in the scaling with k3/k1 is quite sig-
nificant due to the exponential factor e�⇡⌫ , which makes
the signal depend very sensitively on the mass m.

In the strongly coupled regime (µ & m), no closed an-
alytical estimate like (19) is known. However, it is known
that the oscillation frequency of the signal is modified to
⌫ ! ⌫µ ⌘

p
(m2 + µ2)/H2 � 9/4 [31]. We can also an-

ticipate that the signal size has a sensitive dependence on
the mass m so long as µ is not too much greater than m.
Therefore, our main result, namely, the scale-dependent
oscillation frequency and the signal size, still holds.

The above analytical arguments rely on approxima-
tions in several limits which are never really reached by
realistic parameters. Therefore a direct numerical ap-
proach is indispensable to get the signal shape precisely.
We compute (17) numerically and get the full bispec-
trum, including both the background and the signal. Sev-

eral examples are shown in Fig. 3. We show the signals
with the mass decreasing/increasing in the upper/lower
panel, respectively. Compared with the bispectrum of
constant mass (dashed curves), the slow changes of the
frequency and the amplitude are evident in both cases.

Discussions. Large-field inflation models typically show
significant scale dependence that can distort the cosmo-
logical collider signals. In this Letter we show that a
direct coupling between a massive state and the infla-
ton can lead to an oscillatory signal in the bispectrum,
with significant and nonstandard momentum-ratio de-
pendence in both the size and the frequency. We use
quasi-single-field inflation and an exponential ansatz for
the mass to illustrate the point, but we stress that the
signal distortion found in this work depends mainly on
the large field excursion and the direct coupling. Thus
we expect that similar e↵ects should also show up in a
broader class of models with these ingredients.

Phenomenologically, our work shows that the
momentum-ratio dependence of the signal size and fre-
quency can be informative probes of rich dynamics dur-
ing inflation. (See [36] for a related example.) Therefore,
our work invites e↵orts on developing more realistic tem-
plates allowing for the possibility that the signal size and
the frequency could be momentum-ratio dependent.

There are other sources of scale dependence than the
one considered in this Letter, including the slow-roll
background. These have been explored in the context of
primordial standard and nonstandard clocks [35, 37, 38].
We expect the e↵ect to be weaker than ours in large-
field inflation, as detailed before. There is also a known
slow change of signal frequency in the not-so-squeezed
configurations. This change is automatically included in
a numerical approach, and can also be resolved analyti-
cally by pushing the calculation to higher orders in the
momentum ratio.

In this Letter we only considered the e↵ect of time-
dependent mass. More generally, it would be interesting
to explore the similar time dependences in other param-
eters. In particular, a time-dependent two-point mixing
parameter µ could induce a similar change in the sig-
nal frequency. It would also be interesting to incorpo-
rate these nonstandard momentum-ratio dependences in
template-based Fisher forecasts for future observations.
We leave these topics for future studies.
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2.1 The R
2

inflationary background

Let us start with a brief review of the slow-roll picture in the R
2 inflation model. More

details related to the conformal transformation of the metric can be found in Appendix A.
The action relevant to our study is given by:
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and Lmatter can include all kinds of matter fields during inflation. � is also known as the
“scalaron,” which can be viewed as the longitudinal degree of freedom of the gravitational
sector in the higher-order extension of the Einstein’s field equation [71, 72].

It is straightforward to compute observables of the R
2 inflation in the Einstein frame

based on the scalaron potential
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One can check that the plateau region of the potential U(�) for realizing the slow-roll dynamics
(✏U ⌧ 1) is in the limit of �/MP � 1, which implies that the R2 model should be cast into the
“large-field” inflation scenario. For a given epoch in terms of the e-folding number N ⌘ ln a
during inflation, the corresponding scalaron value can be obtained via the formula
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where �N = Nend �N is the number of e-folds from the given epoch to the end of inflation.
This formula allows us to express ✏U as a function of �N .

The most important thing to be outlined here is that: as long as we work out the slow-roll
dynamics of the R

2 model in the Einstein frame (2.2), the matter sector inevitably receives an
universal exponential-type coupling with the inflaton � invoked by the conformal tranforma-
tion of the metric. As pointed out in [34], large-field inflation with such an exponential-type
coupling can introduce mild, yet non-negligible, scale dependence to the equation of motion
of a matter field, modifying solutions of the quantum mode fluctuations from the standard
cases with the dilatation symmetry.

To see more explicitly, let us consider as a typical example, Lmatter = �1
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 The cosmological collider in R2 inflation

conformal transformation. In the Einstein frame (2.2), the equation of motion for the linear
perturbation of the isocurvature scalar � = �0(t) + ��(t, ~x) becomes

�̈� +

 
3�

r
2

3

�̇0

MPH

!
H ˙�� +

✓
k
2

a2
+ e

�
q

2
3

�0
MP V��

◆
�� = 0, (2.6)

where V�� = @
2
�V (�) describes the effective mass around a local minimum at a non-trivial

vacuum expectation value (VEV) �0 6= 0 such that @�V |�=�0 = 0. 2 We assume �̇0 = 0.
Metric perturbations can be omitted in this equation of motion since the energy density of �
only contributes a negligible fraction to the total. Comparing (2.6) to the case of large-field
inflation in [34], one can see that in R

2 inflation the conformal transformation introduces a
same time-dependent factor ⇠ e

�↵�0(t)/MP to the mass term of �� with ↵ =
p
2/3. Moreover,

the conformal coupling also introduces extra modifications to the Hubble friction term.
If we restrict to the tree-level processes given in Figure 4, the transfer vertices or the

interactions vanishes identically from the coupling with potential ⇠ e
�2↵�0/MP V (�), since

we consider a non-trivial VEV �0 near a local minimum with V� = 0. Thus we shall focus
on the coupling with the kinetic term. Through integration by parts, one can derive from
the conformal coupling with the kinetic term in (2.2) to obtain the following vertices and
interactions:
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M
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a
3
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3
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2
, (2.8)

where c2, c3 are constant values of O(1).
Note that interactions with � originated from the conformal factor are always suppressed

by MP , since the scalaron is the longitudinal mode of gravity. This also ensures that mode
functions solved by (2.6) are indeed “free-field” solutions in the interaction picture.

2.2 The near pivot-scale expansion

We now solve (2.6) by expanding the potential V (�) around its stable VEV � = �0 to obtain
a constant mass parameter V�� = m

2
�. Following the approach used in [34], we adopt the

expansion around the pivot scale k⇤ for observations:

�0(t) = �0(t⇤)� |�̇(t⇤)|(t� t⇤), (2.9)

where t⇤ (or ⌘⇤) is the (conformal) time when the pivot scale k⇤ crosses the horizon at which
�k⇤⌘⇤ = 1. The valid range for this expansion is kmin ⌧ k ⌧ kmax, with kmin = e

�10
k⇤ and

kmax = e
10
k⇤. Note that �̇0 < 0 in R

2 inflation.
As we get rid of the mild time dependence in H and �̇0, we obtain a constant slow-roll

parameter ✏U (t⇤) = �̇
2
0
(t⇤)/2M2

P
H

2(t⇤). Now the non-negligible time dependence shows only
in the exponential conformal factor, as
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2The mixed Higgs-R2 inflation [74] provides a possible realization of these conditions.
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in the exponential conformal factor, as

e
�
q

2
3

�0
MP = e

�
q

2
3

�⇤
MP

✓
a

a⇤

◆q
2
3

p
2✏U (t⇤)

, (2.10)

where �⇤ = �(t⇤) and a⇤ = a(t⇤). As a result, we can rewrite (2.6) into the form of

�̈� + (3 +�✏)H ˙�� +

"
k
2

a2
+

✓
a

a⇤

◆�✏

m
2

⇤

#
�� = 0, (2.11)

with m
2
⇤ = e

�
p

2/3�⇤/MPm
2
�. The parameter �✏ =

q
2

3

p
2✏U measures the departure from the

exactly dilatation invariant case. Namely, the standard mode function for a massive scalar
shall be reproduced in the limit of �✏ ! 0.

The constant ✏U (and therefore a constant �✏) expansion used in this section allows us
to proceed the further transformation:

�� = a
�1��✏/2��̃ = (�H⌘)1+�✏/2��̃. (2.12)

Here we consider the canonical quantization of ��̃ as

��̃(⌘, ~x) =

Z
d
3~k

(2⇡)3
e
i~k·~x

h
ũk(⌘)b̂~k + ũ

⇤
k
(⌘)b̂†

�~k

i
, (2.13)

with [b̂~k, b̂
†
�~p

] = (2⇡)3�3(~k+~p). In terms of the dimensionless time parameter ⌧ ⌘ �k⌘, which
is more convenient for numerical computations, we further translate the equation (2.11) into

@
2

@⌧2
ũk +

"
1�

✓
1 +

�✏

2

◆✓
2 +

�✏

2

◆
1

⌧2
+

M
2
⇤

⌧2+�✏

✓
k

k⇤

◆�✏
#
ũk = 0, (2.14)

where M
2
⇤ ⌘ m

2
⇤/H

2 is the dimensionless mass parameter.
One can see that the differential equation (2.14) becomes inhomogeneous if �✏ 6= 0, and

thus the mode function ũk in general can only be solved numerically. Due to the dilatation
symmetry of the de Sitter space, the formulation in terms of the dimensionless time ⌧ = �k⌘

translates the time dependence in the conformal coupling of (2.6) to be explicit k-dependence.
If somehow we could turn off �✏ only to the mass term in (2.14), the equation of motion

becomes

@
2

@⌧2
ũk +


1�

✓
1 +

�✏

2

◆✓
2 +

�✏

2

◆
1

⌧2
+

M
2
⇤

⌧2

�
ũk = 0. (2.15)

This artifical equation exhibits the analytic solution as

ũk = ck(⌫)
p
⌧H

(1)

⌫ (⌧), ⌫(�✏,M⇤) =

s✓
3 +�✏

2

◆2

�M2
⇤ , (2.16)

which recovers the correct Bunch-Davies vacuum state, ũk ! �ie
i⌧
/
p
2k, in the early-time

limit with ⌧ ! 1. It provides useful information for us to discover the initial conditions for
our true solutions. 3

3We use ⌫ =
q

( 3+�✏
2 )2 �M2

⇤ for 0  M⇤ < 3/2 and µ = �i⌫ =
q

M2
⇤ � ( 3+�✏

2 )2 for M⇤ � 3/2.
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Let us return to the realistic situation of (2.14). Since we will need to deal with a convo-
lution of time in the correlation functions of the inflaton, for a better numerical performance,
we propose a factorization of the mode function as

ũk(⌧) = ck(⌫)B̃(⌧)ei⌧ , ck(⌫) = � i

2

r
⇡

k
e
i(⌫+1/2)⇡/2

, (2.17)

where ⌫ = ⌫(�✏,M⇤) is defined in (2.16). Such a factorization is motivated by the equation-
of-motion approach [90] for the strongly coupled regime in the quasi-single-field inflation
[59, 62, 63]. Remarkably, we only adopt the factorization to the mode function ũk which has
to be solved numerically, while, on the other hand, our system is weakly coupled so that the
inflaton mode function takes the standard analytic form of a massless scalar in the de Sitter
space.

In terms of the factorized mode function B̃(k, ⌧), we finally arrive at the equation of
motion reads

@
2

@⌧2
B̃ + 2i

@

@⌧
B̃ +

"
M

2
⇤

⌧2+�✏

✓
k

k⇤

◆�✏

�
✓
1 +

�✏

2

◆✓
2 +

�✏

2

◆
1

⌧2

#
B̃ = 0. (2.18)

A good news is that the mode function ũk (or B̃) does not recognize the broken dilatation
invariance led by a non-zero �✏ in the flat-space (or namely the early-time) limit with ⌧ ! 1.
This means that the mode function shares the standard Bunch-Davies vacuum state, ũk !
�ie

i⌧
/
p
2k, with the case of �✏ = 0. By matching the analytic solution of a standard massive

scalar in the vacuum (see Appendix B for more details), we obtain the initial conditions in
the limit of ⌧ ! 1 as

B̃ =

r
2

⇡
e
�i⇡⌫/2

e
�i⇡/4

,
@

@⌧
B̃ =

r
2

⇡
e
�i⇡⌫/2

e
�i⇡/4

✓
1

2
� ⌫

◆
1

⌧UV

. (2.19)

Here ⌧UV � 1 represents the UV cutoff in our numerical computation.
Some examples of the numerical solutions of the factorized mode function B̃(⌧) are given

in Figure 2. One can see that B̃ essentially captures the oscillation dynamics led by the mass
term M⇤ = m⇤/H in the late-time limit when ⌧ = �k⌘ ⌧ 1, while the conventional vacuum
mode oscillations (⇠ e

i⌧ ) in the early-time limit (⌧ � 1) has been factored out. The choice
of the initial time ⌧UV � 1 must be sufficiently large such that B̃ can precisely reproduce the
standard analytic solution in the scale-invariant case:

B̃0 ⌘ B̃(�✏ = 0) =
p
⌧H

(1)

⌫ (⌧)e�i⌧
. (2.20)

Note that for the cases of M⇤ > 3/2, one should input ⌫ = iµ with µ = (M2
⇤ � 9/4)1/2 to the

initial conditions (2.19). In Figure 2, we pick up a constant ✏U by taking �N = 55 in (2.5)
as an example so that

�55 ⌘ �✏(�N = 55) ⇡ 0.018. (2.21)

There is one more advantage to consider the factorized mode function B̃. The late-time
oscillation of the mode function led by the scalar mass m⇤ is the key to generate the so-call
quantum clock signals. For B̃, this means that the effective mass term in (2.18) shall satisfies

M
2

e↵ =

"
M

2
⇤

⌧2+�✏

✓
k

k⇤

◆�✏

�
✓
1 +

�✏

2

◆✓
2 +

�✏

2

◆
1

⌧2

#
> 0, (2.22)
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 The cosmological collider in R2 inflation YPW [2404.05031]
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Δ
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Figure 3. (Left Panel) The evolution of the tachyonic mass (blue-colored) region with respect to
time which violates the condition (2.22). The green-colored window is the parameter space of constant
�✏ fixed by the value of ✏U in R

2 inflation from �N = 50 to �N = 60. For massive scalars with
M

2
⇤ . 2 in R

2 inflation, their factorized mode functions B̃ do not decay after horizon crossing around
⌧ = 1 if �✏ > 0. Instead, they start to grow until very late time (⌧ ⌧ 1) when (2.22) is satisfied.
(Right Panel) An example for the time evolution of the effective mass M

2
e↵(⌧) given by (2.22) with

M⇤ = 1.3 and �✏ = �55, where M
2
e↵(1) < 0 and M

2
e↵(10

�20) > 0.

or otherwise the mass is tachyonic and the oscillation on superhorizon scales does not occur.
In the standard case with �✏ = 0, this condition indicates M2

⇤ > 2, where M2
⇤ = 2 corresponds

to conformally coupled scalars in the de Sitter space [9].
Interestingly, for the presence of a non-zero �✏ the condition (2.22) becomes time de-

pendent. An illustration of the evolution of the condition (2.22) is given in Figure 3 with
the window of constant �✏ values in R

2 inflation ranging from the choices of �N = 50 to
�N = 60. For the case of �✏ = �55, M⇤ = 1.3 is inside the tachyonic (blue-colored) region
around the epoch of horizon crossing at ⌧ = 1. Thus the mode function B̃ is growing on
superhorizon scales until sufficiently late time when the scalar mass m⇤ finally dominates and
(2.22) is satisfied. The evolution of the M

2

e↵
(⌧) with M⇤ = 1.3 is shown in the right panel

of Figure 3. In this case the mode function has a peak amplitude in the region of ⌧ < 1, as
shown in the left panel of Figure 2. This behavior is unfamiliar for the standard case with
�✏ = 0, and it provides a possible realization of the “cosmological tachyon collider [44].” On
the other hand, for M

2
⇤ > 2 the condition (2.22) is always satisfied for arbitrary choices of

�✏. In this case the mode function B̃ starts to decay after crossing the horizon around ⌧ = 1,
as shown in the right panel of Figure 2. This is the usual behavior for massive scalars on
superhorizon scales.

2.3 Solutions with a slow-roll scalaron

For a given potential in slow-roll inflationary models, we can obtain the inflaton field value at
the end of inflation, �end, at the epoch when either one of the slow-roll parameters (defined as
A.10) reaches to the order of unity. In R

2 inflation, (2.5) gives a good analytic approximation
for the inflaton value in terms of the e-folding numbers to the end of inflation (see also
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See also the cosmological tachyon collider: McCulloch, Pajer & Tong [2401.11009]
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Figure 2. The evolution of the factorized mode function B̃ with respected to ⌧ = �k⌘ for M⇤ = 1.3
(Left Panel) and M⇤ = 2 (Right Panel). Here we use k = k⇤ = 0.002 Mpc�1, and a constant �✏ = �55.

term in (2.2) to obtain the following vertices and interactions:

�L2 ⇢
c2

M
2

P

a
3
e
�
q

2
3

�0
MP �0�̇0��̇��, (2.7)

�L3 ⇢
c3

M
2

P

a
3
e
�
q

2
3

�0
MP �0��(@��)

2
, (2.8)

where c2, c3 are constant values of O(1). We will use (2.7) and (2.8) for the calculations of
the processes given in Figure 1, which is more convenient for extracting the effects led by
the conformal coupling. In the limit of �̇0 ! 0, the overall tree-level contribution from the
original kinetic term ⇠ e

�↵�0/MP (@�)2
E

goes away, which means that the contribution from
(2.7) and (2.8) is exactly cancelled out by the other terms from the integration by parts.
Thus, with �̇0 6= 0, the contribution from the original vertices is expected to be the results
based on (2.7) and (2.8) times a suppression factor given by the smallness of the non-vanished
�̇0. This suppression factor depends on the explicit model for the isocurvature field. (It is
the non-minimal coupling (A.29) if we consider the model of Appendix A.3.)

Note that interactions with � originated from the conformal factor are always suppressed
by MP , since the scalaron is the longitudinal mode of gravity. This also ensures that mode
functions solved by (2.6) are indeed “free-field” solutions in the interaction picture.

2.2 The near pivot-scale expansion

We now solve (2.6) by expanding the potential V (�) around its stable VEV � = �0 to obtain
a constant mass parameter V�� = m

2
�. Following the approach used in [36], we adopt the

expansion around the pivot scale k⇤ for observations:

�0(t) = �0(t⇤)� |�̇(t⇤)|(t� t⇤), (2.9)

where t⇤ (or ⌘⇤) is the (conformal) time when the pivot scale k⇤ crosses the horizon at which
�k⇤⌘⇤ = 1. The valid range for this expansion is kmin ⌧ k ⌧ kmax, with kmin = e

�10
k⇤ and

kmax = e
10
k⇤. Note that �̇0 < 0 in R

2 inflation.
As we get rid of the mild time dependence in H and �̇0, we obtain a constant slow-roll

parameter ✏U (t⇤) = �̇
2
0
(t⇤)/2M2

P
H

2(t⇤). Now the non-negligible time dependence shows only
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 Factorized mode functions Dynamical Analytic: Aoki, Noumi, Sano & Yamaguchi [2312.09642]
Pivot Scale:               Reece, Wang & Xianyu [2204.11869]
Slow-roll Scalaron:   YPW [2404.05031]
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Figure 3. Numerical solutions of the factorized mode function B̃ with k/k⇤ = 1 (Left Panel)
and k/k⇤ = 1000 (Right Panel) based on the pivot-scale expansion (Section 2.2) and the slow-roll
scalaron approximation (Section 2.3) with M⇤ = 2 and �✏ = �55 given by (2.21). These results are
compared with analytic formulae with a standard constant mass and a dynamical time-dependent
mass (Section 2.4).

choices of �✏. In this case the mode function B̃ starts to decay after crossing the horizon
around ⌧ = 1, as shown in the right panel of Figure 1. This is the usual behavior for massive
scalars on superhorizon scales.

2.3 Solutions with a slow-roll scalaron

For a given potential in slow-roll inflationary models, we can obtain the inflaton field value at
the end of inflation, �end, at the epoch when either one of the slow-roll parameters (defined as
A.10) reaches to the order of unity. In R

2 inflation, (2.5) gives a good analytic approximation
for the inflaton value in terms of the e-folding numbers to the end of inflation (see also
Appendix A.1). This allows us to express the conformal coupling as

e
�
q

2
3

�0
MP = e

�
q

2
3

�0��⇤+�⇤
MP = e

�
q

2
3

�⇤
MP

�N⇤
�N

, (2.23)

where �N = ln(aend/a) = ln ⌧ � ln ⌧end and ⌧end ⌘ �k⌘end. �N⇤ = ln ⌧⇤ � ln ⌧end is the
number of e-folds from k⇤ crosses the horizon to the end of inflation. We take �N⇤ = 55
with �k⇤⌘⇤ = 1 and �k⇤⌘end = e

�55 for comparing with results of the pivot-scale expansion
approach based on �55 given by (2.21). Note that ⌧end ⌧ ⌧IR is required with ⌧IR being the
late-time cutoff in our numerical computations.

In terms of the conformal time ⌘, the equation of motion (2.6) becomes

��
00 � 2 +�✏

⌘
��

0 +


k
2 + e

�
q

2
3

�0
MP

m
2
�

(�H⌘)2

�
�� = 0, (2.24)

where a prime denotes the derivative with respect to ⌘. In terms of the expression in (2.23)
for the slow-roll inflaton as a function of the conformal time, we can import the factorized
mode function (2.17) and rewrite the equation of motion following the same procedure as

@
2

@⌧2
B̃ + 2i

@

@⌧
B̃ +


M

2
⇤

⌧2

✓
55

ln ⌧ � lnxk + 55

◆
�
✓
1 +

�✏

2

◆✓
2 +

�✏

2

◆
1

⌧2

�
B̃ = 0, (2.25)
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A first report from Baryon Oscillation Spectroscopic Survey (BOSS):25
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FIG. 10. Marginalized constraints on parameters describing inflaton self-interactions and Cosmological Collider PNG for
cs/c� = 1, varying the mass µ. The inset panel shows the two-dimensional contour in the �⇡̇2� � �(r⇡)2� plane, which exhibits
a strong degeneracy. In red (blue) we show results without (with) constraining priors on b2 and bG2) obtained from HOD
analyses. The marginalized constraints are collected in Tab. IV.

Tab. IV shows that after µ marginalization this does not happen anymore, and the 95% CL intervals for both �
⇡̇2�

and �
(r⇡)2� are of order 105. Tab. IV also shows that the constraints on equilateral and orthogonal non-Gaussianities

are weaker than those obtained by Ref. [64] for the single-field inflation case, due to the Collider degeneracy. The
triangle plot for primordial parameters is shown in Fig. 10 (red contours). The most interesting features of this plot
are the confirmation of a strong degeneracy between �

⇡̇2� and �
(r⇡)2�, and the fact that the strongest degeneracy

between fNL and � appears in the f
equil
NL � �

⇡̇2� and f
ortho
NL � �

⇡̇2� planes.
In Fig. 11 we show the two-dimensional contours describing the correlations of PNG amplitudes with quadratic

galaxy biases.13 Comparing the red contours in the rightmost plot of Fig. 11 to those of Fig. S3 of Ref. [64] (which
considered only self-interactions), we find that the degeneracy between f

equil
NL and bG2 is still present, and that the

contours involving both quadratic bias and fNL are more non-Gaussian than before. In the red contours of the leftmost

13 We restrict to the BOSS North Galactic Cap z = 0.61 data chunk for clarity – contours for other data chunks are similar.
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FIG. 9. As Fig. 6, but including strong priors on inflaton self-interactions, centered on zero. We use the same plot ranges as
in Fig. 6 to facilitate comparison.

without galaxy-formation priors including galaxy-formation priors

Parameter mean 95% lower 95% upper mean 95% lower 95% upper

f equil
NL 1.9 ⇥ 102 �1.2 ⇥ 103 1.4 ⇥ 103 1.5 ⇥ 102 �1.2 ⇥ 103 1.4 ⇥ 103

fortho
NL 5.4 ⇥ 102 �1.2 ⇥ 102 1.5 ⇥ 103 7.1 ⇥ 102 �6.6 ⇥ 101 1.8 ⇥ 103

�⇡̇2� �1.6 ⇥ 105 �5.4 ⇥ 105 3.7 ⇥ 104 �2.0 ⇥ 105 �6.6 ⇥ 105 4.9 ⇥ 104

�(r⇡)2� � � < 1.3 ⇥ 105 � � < 1.6 ⇥ 105

µ � > 1.4 � � > 1.7 �

TABLE IV. BOSS constraints on the microphysical collider amplitudes �⇡̇2� and �(r⇡)2� and the self-interaction templates
f equil
NL and fortho

NL , fixing cs = c� and marginalizing over the mass parameter µ 2 [0, 5]. As in the previous sections we give the
mean and 95% CL bound for �⇡̇2� and the 95% upper bound on the positive parameter �(r⇡)2�. The first (second) three
columns show constraints without (with) the HOD-inspired priors on quadratic bias parameters, which are summarized in
Appendix B.

above); these are collected in the leftmost three columns of Tab. IV. We find that marginalizing over µ degrades
the constraints on both Cosmological Collider amplitudes compared to the above results. Whilst in §4.2 we had
seen that some choices of µ led to constraints tighter than the “perturbativity bounds” �

⇡̇2� . 105, �
(r⇡)2� . 105,
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A first report from Planck CMB data:

(a) µ = 2 (b) µ = 3

(c) µ = 4 (d) µ = 5

Figure 4: Angular-dependent shapes from spin-2 exchange template (2.27) with di↵erent masses.

bootstrap approach in Ref. [61] and derive the template of massive spin-2 exchange as an explicit

example. The starting point is a generalized version of the approximated scalar seed Î
(n)
a (u),

whose definition is given in (A.12), and we leave more details in Appendix A. Then the analytical

templates of spin-s exchanges can be obtained by using two types di↵erential operators

Sspin�s
col. (k1, k2, k3) = Ps(k̂2 · k̂3)k

s�1
2 k�s

3 W
s
12 D

(s)
23

h
k3Î

(s)
i
+ 5 perms. , (2.25)

where W
s
12 = k1@k1(1 � k2@k2) is another weight-shifting operator and D

(s)
23 is the spin-raising

operator. For spin-2 exchanges, we have

D
(2)
23 ⌘ k33

"✓
@k3 �

2

k3

◆2

@k2 �
1

3c2s
@3
k2

#
, (2.26)

which leads to the following bispectrum template

Ss=2
col. = P2(k̂2 · k̂3)

1991k1k2k33
(� + 6)2k8T

⇥
(k1 + k2)

2(k1 + 6k2)� (k1 + k2)(7k1 + 57k2)k3 + (�7k1 + 8k2)k
2
3 + k33

⇤

+P2(k̂2 · k̂3)
k1k2

8(k1 + k2)3

s
⇡3

⇥
1 + sinh2(⇡µ)

⇤

2µ tanh(⇡µ)

�2(� + 2)2

cosh2(⇡µ)

✓
k3

k1 + k2

◆1/2

13

(a) µ = 0.5 (b) µ = 1

(c) µ = 1.5 (d) µ = 3

Figure 2: Equilateral-like shapes from massive scalar exchanges with di↵erent masses. The blue one is
the standard equilateral shape generated by the single field EFT operator �̇3.

where W12 are di↵erential operators associated with the form of the cubic vertices. The most

general form of the weight-shifting operators for boost-breaking interactions is given in [61], using

which we can derive the scalar exchange bispectrum from vertices with any number of derivatives.

Here we just focus on the following two simplest examples

W
�̇2�
12 = �k1k2@

2
k12 , (2.13)

W
(@i�)2�
12 = �

1

2k1k2
(k23 � k21 � k22)(1� k1@k1) (1� k2@k2) . (2.14)

Then substituting the approximated scalar seed (2.10) into (2.12), we find the simplified shape

templates from massive scalar exchanges. The result from the cubic vertex �̇2� is given by

Sscalar�I
col. =

2k1k2k3
�k2T (k1 + k2)


1 +

4k3
(� + 2)(k1 + k2)

+
(� + 4)k23

(� + 2)2(k1 + k2)2

�✓
kT

k1 + k2

◆� �
�+2

+ S̃I (2.15)

+
k1k2

(k1 + k2)2

s
⇡3�(� + 2)

µ sinh(2⇡µ)

✓
k3

k1 + k2

◆1/2

cos


µ log

✓
k3

2(k1 + k2)

◆
+ �

�
+ 2 perms. ,

9

Python code, named CMB-BEST (CMB Bispectrum ESTimator) [103]. The formalism combines

the advantages of two conventional methods (KSW and Modal) using a flexible set of modal

basis functions in the primordial space and it has been extensively validated against the Modal

bispectrum pipeline used for the Planck analysis [79, 83]. All computationally expensive steps

are precomputed at a given modal resolution into a data file provided with the code, so that

the users can obtain the Planck 2018 constraints on arbitrary shape functions of interest rapidly

(within a minute on a laptop). Because of CMB-BEST’s flexible mode expansions and its speed

and resolution, it is an ideal tool for studying cosmological collider signals.

On the basis of the theoretical survey presented here, we have deployed the CMB-BEST

pipeline to perform the first comprehensive CMB search for cosmological collider signals, yielding

the most precise measurements to date of the wide array of relevant bispectrum shapes. The

originality of this work is twofold:

• We derive a set of cosmological collider bispectrum templates that are relatively simple and

su�ciently accurate across the whole observational domain. With the help of the bootstrap

approach, we exploit the systematic classification and complete analytic understanding of

the bispectrum shapes to capture the relevant possibilities and to simplify the analytical

expressions. In addition, we also endeavour to collate all the various types of shape ansatzes

given in the cosmological collider literature. Our consideration of the shape functions

incorporates: 1) the oscillatory signals from massive fields; 2) the angular-dependence of

profiles due to spinning particles; and 3) three additional new shapes caused by the e↵ect of

varying the sound speed. One particular advantage of these simplified bispectrum templates

is that it allows us to perform parameter scans in the present data analysis. Their analytical

Shape Template fNL (68% CL) Raw S/N Adjusted S/N Section

Light scalar exchange [3] (2.6) 10± 26 0.37 0.12 4.1

Scalar exchange I (2.15) 11± 13 0.86 0.67 4.1

Scalar exchange II (2.20) �91± 40 2.3 1.8 4.1

Heavy-spin exchange (2.24) �59± 32 1.9 1.2 4.2

Massive spin-2 exchange (2.27) �2.1± 1.1 1.9 0.90 4.2

Equilateral collider [61] (2.32) �178± 72 2.5 0.90 4.3

Low-speed collider [42] (2.33) �9± 10 0.89 0.29 4.3

Multi-speed PNG [66] (2.34) �3.1± 2.3 1.3 0.61 4.3

Table 1: Summary of the CMB bispectrum constraints presented in this work. Most templates have free
parameters, which were set to their best-fit values for the ‘constraints’ column in this Table; refer to the
corresponding section for the full constraints. The adjusted signal-to-noise incorporates the look-elsewhere
e↵ect, also detailed in the section.
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(1) f(R) gravity ! e�↵�/MP , ↵ =
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(2) Higgs inflation ⇠ h2�2 ⇠ M2
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(3) The Standard Model mass spectrum.
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Future CMB experiments timeline
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Figure 1. Timeline for future CMB experiments (left panel), their E-modes noise curves (upper right panel)
and associated error bars (lower right panel). In the lower right panel, we also show the signal (blue line)
resulting from a resonant feature model with an amplitude �P/P = 0.05, typically of the order of magnitude
of the features hinted at by Planck data. Note also that the error bars have been centered around zero for
illustration purposes only, so they can be easily compared to the amplitude of the signal.

a model-dependent envelope. Specifically, sharp features generate a correction of the form
�Psharp(k) / P0 sin(k/k0) where k0 is the mode that crosses the horizon at the time of
the sharp feature, while resonant features take the form �Pres(k) / P0 sin(! ln k + phase),
where the running is linear in ln k space. Some models of inflation, such as the so-called
Classical Primordial Standard Clocks (CPSC) predict a complicated superposition of the
two kinds of features [20–38].1 Measuring the parameters describing �P would give access
to the fundamental physics at the origin of the signal, necessarily beyond the simple SFSR
paradigm.

Interestingly, current data may already hint at primordial features. Temperature data
indeed show residuals that do not agree with the standard cosmological model, with a statis-
tical significance up to 3�, and that can be explained by primordial features. Such anomalies
include a systematic suppression of power in the TT angular spectra compared to the ⇤CDM
best-fit for large scales, ` . 30, and an oscillatory-like structure of residuals at higher `, which
is mostly significant around ` ⇠ 750. Many feature models have been compared to Planck
data in the literature (see [17, 18] for reviews). Although interesting best-fit candidates have
been identified, none of the feature models is statistically favored over the SFSR paradigm,
due to the introduction of penalizing extra parameters.

Given the hints for them from the data, and the interesting physical information that

1Recently, it has also been pointed out that an oscillatory feature in the inflaton potential, with a bumpy
modulation may address some interesting residuals in CMB data [39–41]. In these models, in general, only
one of the two runnings shows up clearly and the other acts as a modulation of the dominant running.
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 R2 inflation

ϕ

V(ϕ)

2.1 The R
2

inflationary background

Let us start with a brief review of the slow-roll picture in the R
2 inflation model. More

details related to the conformal transformation of the metric can be found in Appendix A.
The action relevant to our study is given by:

S =

Z
d
4
x
p
�gJ

M
2

P

2


RJ +

R
2

J

6M2

�
+

Z
d
4
x
p
�gJ Lmatter, (2.1)

=
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�gE


M

2
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2
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�gE e
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q
2
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�
MP Lmatter, (2.2)

where RJ (RE) is the Ricci scalar in the Jordan (Einstein) frame constructed via the metric

g
J
µ⌫ = e

�
q

2
3

�
MP g

E
µ⌫ and the definition of the conformal factor ⌦2 = e

q
2
3

�
MP makes sure that

the inflaton � is canonically normalized in the Einstein frame (2.2). Note that (@�)2
E

⌘
g
µ⌫

E
@µ�@⌫�. The mass scale M controls the Hubble scale of inflation H in the Einstein frame

and Lmatter can include all kinds of matter fields during inflation. � is also known as the
“scalaron,” which can be viewed as the longitudinal degree of freedom of the gravitational
sector in the higher-order extension of the Einstein’s field equation [71, 72].

It is straightforward to compute observables of the R
2 inflation in the Einstein frame

based on the scalaron potential

U(�) =
3

4
M

2

PM
2

✓
1� e

�
q

2
3

�
MP

◆2

. (2.3)

The slow-roll parameters of the R
2 model can be obtained from U(�). For example, the first

slow-roll parameter reads

✏U (�) =
M

2

P

2

✓
U�

U

◆2

=
4

3

✓
e

q
2
3

�
MP � 1

◆�2

. (2.4)

One can check that the plateau region of the potential U(�) for realizing the slow-roll dynamics
(✏U ⌧ 1) is in the limit of �/MP � 1, which implies that the R2 model should be cast into the
“large-field” inflation scenario. For a given epoch in terms of the e-folding number N ⌘ ln a
during inflation, the corresponding scalaron value can be obtained via the formula

�

MP

⇡
r

3

2
ln

✓
4

3
|�N |

◆
, (2.5)

where �N = Nend �N is the number of e-folds from the given epoch to the end of inflation.
This formula allows us to express ✏U as a function of �N .

The most important thing to be outlined here is that: as long as we work out the slow-roll
dynamics of the R

2 model in the Einstein frame (2.2), the matter sector inevitably receives an
universal exponential-type coupling with the inflaton � invoked by the conformal tranforma-
tion of the metric. As pointed out in [34], large-field inflation with such an exponential-type
coupling can introduce mild, yet non-negligible, scale dependence to the equation of motion
of a matter field, modifying solutions of the quantum mode fluctuations from the standard
cases with the dilatation symmetry.

To see more explicitly, let us consider as a typical example, Lmatter = �1

2
(@�)2

J
� V (�)

is a canonical scalar in the Jordan frame (2.1), where (@�)2
J
= e

q
2
3

�
MP g

µ⌫

E
@µ�@⌫� after the
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Power spectrum YPW [2404.05031]
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On the other hand, for the slow-roll (SR) scalaron approximation we can follow the same
procedure to obtain
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with the numerical factor defined as
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The results of C(M⇤) computed from different approaches are given in Figure 5.
The standard analytic result based on the dilation invariant mode function (3.13) is

found to be of the form [45]:
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where  (1)(z) = d
2 ln�(z)/dz2 is the first derivative of the digamma function.

In Figure 5, we compare numerical results of C(�✏,M⇤, xk) from both methods of the
near pivot-scale expansion and the slow-roll scalaron approximation. Their results in R

2

inflation agree with each other. To check the numerical error led by the early-time (or the
late-time) cutoff ⌧UV (⌧IR), we perform the numerical check of (3.14) with B̃ replaced by
the standard analytic mode functions (2.20) but using the same set of {⌧IR, ⌧UV}. Since
the solution of �✏ = 0 is supposed to reproduce the standard analytic result, one can see
that the error enhances with the increase of M⇤ and therefore we shall truncate the analysis
around M⇤ . 6. This numerical error is mainly due to the fast oscillations near the cutoff
⌧UV, which is independent of our choices of �✏ or xk. There is an universal enhancement
C(�55,M⇤, xk)/C(0,M⇤, xk) ⇠ (k⇤/H)��55 led by the modified decay rate of the scalar
perburbation �� with a non-zero �✏. The maximal enhancement is given by

✓
k⇤
H

◆��55

⇡ 10.1⇥
✓

k⇤

0.002 Mpc�1

3⇥ 1013 GeV
H

◆��55

, (3.18)

where H < 3.04⇥1013 GeV, or the tensor-to-scalar ratio r < 0.036 is a recently improved up-
per bound [79]. One can check the scale-dependence in terms of xk = k/k⇤ for C(�✏,M⇤, xk)
is red-tilted and is the same for the two numerical approaches.

4 The simplest quantum primordial clock

Bispectrum from the 3-point correlation function of the curvature perturbation is the simplest
observable for the oscillatory momentum scaling features created by the (virtual) production
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5 Conclusions and discussions

In this work we have investigated numerical solutions of the quantum mode functions of a
massive scalar field during R

2 inflation. We have examined the leading corrections to the
primordial power spectrum and the simplest realization of the so-called quantum primordial
clock signals induced by the non-local propagation of the massive scalar perturbations under
the slow-roll background created by the R

2 model. The most important findings of this work
can be outlined as:

• The slow-roll inflaton � (or namely the scalaron) in the Einstein frame of R2 inflation
couples to all matter fields through the unique factor e

�↵�/MP with ↵ =
p
2/3 under

the conformal transformation, leading to the breaking of dilatation symmetry in the
mode functions of matter perturbations. For a massive scalar field �, the slow-roll
scalaron results in a time-varying mass m

2(t) ⇠ e
�↵�(t)/MPm

2
� and a modified decay

rate �� ⇠ a
�(3+�✏)/2 on superhorizon scales, where �✏ ⇡ 0.018 (2.21).

• For a pivot scale k⇤ = 0.002 Mpc�1, the modified decay rate for a massive scalar
perturbation �� results in a universal enhancement (k⇤/H)��✏ . 10 to all primordial
correlators involved with the exchange process for ��. The maximal enhancement is
given by the highest inflationary Hubble scale H = 3⇥ 1013 GeV (3.18) from the recent
bound [79]. For the corrections to the primordial power spectrum, we find

�P

P0

⇠ �model ⇥ C(�✏,M⇤, k/k⇤), (5.1)

where �model ⇠ 10�8 ⇥ �
2
0
/M

2

P
depends on the models of the massive scalar �, �0 is the

scalar VEV, and P0 is the scalaron power spectrum without corrections. The numerical
factor C is given by (3.14) or (3.16).

• The explicit scale and time dependence in the mode functions of the scalar perturbations
brings in scale dependence to the shape functions of primordial bispectra. Figure 6 shows
the discrepancy of the spectral shape functions in the same (equilateral-to-squeezed)
configuration but scaling over two different ranges of k-scales. The typical size of non-
Gaussianity corresponding to this exchange process is

f
eq

NL
⇠ �model ⇥

✓
k⇤
H

◆��✏

⇥ 2<
⇥
S
eq

mix

⇤
, (5.2)

with the same �model from the power spectrum and 2<[Seq

mix
] . 0.5 is shown in Figure 7.

Given that we only consider vertices arisen from the conformal factor via integration by
parts, each vertex of (2.7) or (2.8) is at least suppressed by M

�2

P
. This makes all the relevant

predictions very difficult to be tested by future experiments. Nevertheless, the investigation
is still worth an effort, since R

2 inflation is the best-fit scenario. Moreover, we have not
yet explored the full possibilities to obtain some much larger �model from different model
buildings. Following the findings of this work, there are several topics remaining to be studied.
For example:

• Higgs inflation. In the large-field regime (�/MP � 1), the conformal factor in the
Higgs inflation with a non-minimal coupling to gravity [73] coincides with that in the
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