

ATLAS Jet Reconstruction and Calibration

LHC Electroweak Working Group (EWWG) Meeting

Tobias Fitschen, Ana Peixoto (Jet Definitions and MC Calibration Conveners) On behalf of the ATLAS Collaboration

26 June 2024

University of Manchester

European Research Council Established by the European Commission

Jet definitions

- Particle (truth) jets (MC only)
- Track jets: tracker info only
- Calo jets: calo info only
 - LCTоро, ЕМТоро
- Combined track+calo jets
 - ParticleFlow, UFO, TrackCaloCluster

Anti- k_T jet algorithm

- Mostly circular in $y \phi$ plane
- Used for most purposes

Constituents: TopoClusters

🗗 Eur. Phys. J. C 77 (2017) 490

Cell noise ratio: $\zeta_{\text{cell}}^{\text{EM}} = \frac{E_{\text{cell}}^{\text{EM}}}{\sigma_{\text{noise,cell}}^{\text{EM}}}$

Topological Clusters

of E deposits in calorimeter cells

- \rightarrow algorithm:
 - 1 Seed: Find cells with energy $E > 4 \times |\zeta|$

🗗 Eur. Phys. J. C 77 (2017) 490

Cell noise ratio: $\zeta_{\text{cell}}^{\text{EM}} = \frac{E_{\text{cell}}^{\text{EM}}}{\sigma_{\text{noise,cell}}^{\text{EM}}}$

Topological Clusters

of E deposits in calorimeter cells

- \rightarrow algorithm:
 - 1 **Seed:** Find cells with energy $E > 4 \times |\zeta|$
 - 2 Growth: Neighbors with

 $E > 2 imes |\zeta|$ are added

🗗 Eur. Phys. J. C 77 (2017) 490

 $\text{Cell noise ratio: } \zeta_{\text{cell}}^{\text{EM}} = \frac{E_{\text{cell}}^{\text{EM}}}{\sigma_{\text{noise,cell}}^{\text{EM}}}$

Topological Clusters

of E deposits in calorimeter cells

- \rightarrow algorithm:
 - 1 Seed: Find cells with energy $E > 4 \times |\zeta|$
 - 2 **Growth:** Neighbors with $E > 2 \times |\zeta|$ are added
 - 3 **Boundary:** any neighboring cells are added

(no ζ requirement)

🗗 Eur. Phys. J. C 77 (2017) 490

Cell noise ratio: $\zeta_{\text{cell}}^{\text{EM}} = \frac{E_{\text{cell}}^{\text{EM}}}{\sigma_{\text{noise,cell}}^{\text{EM}}}$

Topological Clusters

of E deposits in calorimeter cells

- \rightarrow algorithm:
 - 1 Seed: Find cells with energy $E > 4 \times |\zeta|$
 - 2 **Growth:** Neighbors with $E > 2 \times |\zeta|$ are added
 - 3 **Boundary:** any neighboring cells are added

(no ζ requirement)

4 **Split:** Breaks up clusters with multiple maxima

🗗 Eur. Phys. J. C 77 (2017) 490

Cell noise ratio: $\zeta_{\text{cell}}^{\text{EM}} = \frac{E_{\text{cell}}^{\text{EM}}}{\sigma_{\text{noise,cell}}^{\text{EM}}}$

Topological Clusters

of E deposits in calorimeter cells

- \rightarrow algorithm:
 - 1 Seed: Find cells with energy $E > 4 \times |\zeta|$
 - 2 **Growth:** Neighbors with $E > 2 \times |\zeta|$ are added
 - 3 **Boundary:** any neighboring cells are added

(no ζ requirement)

4 **Split:** Breaks up clusters with multiple maxima

Jets build from TopoClusters are called **EMTopo** Jets **EM:** Electromagnetic scale

🗗 Eur. Phys. J. C 77 (2017) 490

Cell noise ratio: $\zeta_{\text{cell}}^{\text{EM}} = \frac{E_{\text{cell}}^{\text{EM}}}{\sigma_{\text{noise,cell}}^{\text{EM}}}$

Topological Clusters

of E deposits in calorimeter cells

- \rightarrow algorithm:
 - 1 Seed: Find cells with energy $E > 4 \times |\zeta|$
 - 2 **Growth:** Neighbors with $E > 2 \times |\zeta|$ are added
 - 3 **Boundary:** any neighboring cells are added

(no ζ requirement)

4 **Split:** Breaks up clusters with multiple maxima

Jets build from TopoClusters are called **EMTopo** Jets **EM:** Electromagnetic scale \rightarrow ATLAS calorimeters are non-compensating \rightarrow EM response \approx 1, hadronic response < 1

3/21

🗹 Eur. Phys. J. C 77 (2017) 490

Local Cluster Weighting (LCW)

• TopoClusters are identified to be EM or had by likelihood $\mathcal{P}_{clus}^{\mathsf{EM}}$

- TopoClusters are identified to be EM or had by likelihood $\mathcal{P}_{clus}^{\mathsf{EM}}$
- Their momenta are reweighted (ω) by
 - Difference in response due to non-compensating calorimeter

🗗 Eur. Phys. J. C 77 (2017) 490

- TopoClusters are identified to be EM or had by likelihood $\mathcal{P}_{clus}^{\mathsf{EM}}$
- Their momenta are reweighted (ω) by
 - Difference in response due to non-compensating calorimeter
 - Energy falling in unclustered cells

🗗 Eur. Phys. J. C 77 (2017) 490

- TopoClusters are identified to be EM or had by likelihood $\mathcal{P}_{clus}^{\mathsf{EM}}$
- Their momenta are reweighted (ω) by
 - Difference in response due to non-compensating calorimeter
 - Energy falling in unclustered cells
 - Inactive/dead regions of the detector

🗗 Eur. Phys. J. C 77 (2017) 490

- TopoClusters are identified to be EM or had by likelihood $\mathcal{P}_{clus}^{\mathsf{EM}}$
- Their momenta are reweighted (ω) by
 - Difference in response due to non-compensating calorimeter
 - Energy falling in unclustered cells
 - Inactive/dead regions of the detector

🕑 Eur. Phys. J. C 77 (2017) 490

- TopoClusters are identified to be EM or had by likelihood $\mathcal{P}_{clus}^{\mathsf{EM}}$
- Their momenta are reweighted (ω) by
 - Difference in response due to non-compensating calorimeter
 - Energy falling in unclustered cells
 - Inactive/dead regions of the detector

Jets build from TopoClusters+LCW are called LCTopo Jets used for large-R (R = 1.0) jets in Run 2

Recent Development: ML Cluster Calibration

π^{0} vs π^{\pm} Shower Classification

First step in cluster calibration: Differentiate EM from hadronic clusters Non-compensating ATLAS calorimeter requires different calibrations for neutral/charged clusters

-0.10

Baseline used in LCW: \mathcal{P}_{clus}^{EM}

- Binned EM-scale cluster variables
 - Total cluster energy $E_{\text{cluster}}^{\text{EM}}$
 - Pseudorapidity η
 - ${\scriptstyle {\Bbb C}}$ Longitudinal depth $\lambda_{\sf clus}$
 - 🖙 1st cell energy moment $\langle \rho_{\rm cell}
 angle$
- Combined into likelihood $\mathcal{P}_{clus}^{\mathsf{EM}}$

Individual calorimeter cell signals

- $\rightarrow\,$ As point clouds (GNN, PFN)
- \rightarrow Or projected on images (CNN)

Observations

- All point cloud methods significantly outperform baseline $\mathcal{P}_{clus}^{\text{EM}}$

Energy Regression

Second step: Energy Calibration Observations

- GNN performs best wrt. response and width
- Followed by Deep Sets
- New: Bayesian NN (BNN)

Cluster Energy Resolution

ⓑ 5/21

Pileup Mitigation at Constituent Level

Constituent Subtraction (CS)

🕑 JHEP 1406 (2014) 092

ď

- Add ghosts in grid of $A_{g} = \eta \times \phi = 0.1 \times 0.1$
- With $p_T^g = A_g \times \rho$
 - $\rho = \operatorname{med}\left\{\frac{p_{\mathrm{T}}}{A}\right\}$: median energy density in event
 - Measure of PU in event
- Subtract p_T^g from p_T of constituents c within $\Delta R(g, c)$

Mass profile with CS closer to no-PU than with area-based alone 6/21

Soft Killer (SK)

- CS: Scales constituents
- SK: Removes constituents
- Consider constituents in η, ϕ grid
- All constituents with $p_{\rm T} < p_{\rm T}^{\rm cut}$ are removed
- $p_{\rm T}^{\rm cut}$ determined such that half of grid cells are empty

ATLAS uses CS+SK for R=1.0 jets

Constituents: Adding Tracks

the tracker $p_{\rm T}$ resolution

 $\sigma\left(\frac{1}{\rho_{\rm T}}\right) = 0.036\% \cdot \rho_{\rm T} \oplus 1.3\%$

is better than the calorimeter ${\ensuremath{\it E}}$ resolution

$$\frac{\sigma(E)}{E} = \frac{50\%}{\sqrt{E}} \oplus 3.4\% \oplus \frac{1\%}{E}$$

d source

Additionally, the tracker has better acceptance (threshold) for soft particles

Jet definitions used in Run 3 (and partly Run 2) rely on calo+track information

Particle Flow (PFlow)

PFlow makes use of tracking information at constituent level shows great JER improvement over calo jets in low-pT Especially in the central region

The Need for LargeR jets

🕑 arxiv:1306.4945

In addition to R=0.4 many analyses use R=1.0 jets

Best option depends on $p_{T}(V)$:

 Separation inversely proportional to transverse momentum p_T

$$\Delta R(q,q') pprox rac{2m_W}{p_{\mathrm{T}}^W}$$

- For $m_W = 80$ GeV, R = 0.4cones around qq' overlap $(\Delta R < 0.8)$ at $p_T > 200$ GeV
- \rightarrow Reconstruct merged

Jet-tagging can be done to identify initiator of R=1.0 jets \rightarrow need good mass and substructure resolution

10/21

Z ATLAS-CONF-2016-035

Combine track with calo information for jet-mass definition

- Tracks are ♂ ghost-associated to calo-jet, yielding track mass m^{track}
- Scaled by calo/track correction factor accounting for neutral components

$$m^{ extsf{TA}} = rac{p_{ extsf{T}}^{ extsf{calo}}}{p_{ extsf{T}}^{ extsf{track}}} imes m^{ extsf{track}}$$

• Linearly combined with calo mass according to resolution σ

$$m^{\rm comb} = m_{\rm calo} \frac{\sigma_{m_{\rm calo}}^{-2}}{\sigma_{m_{\rm calo}}^{-2} + \sigma_{m_{\rm TA}}^{-2}} + m_{\rm TA} \frac{\sigma_{m_{\rm TA}}^{-2}}{\sigma_{m_{\rm calo}}^{-2} + \sigma_{m_{\rm TA}}^{-2}}$$

 \rightarrow Improved mass resolution over the whole $p_{\rm T}$ range \rightarrow but only for mass, not for variables

11/21

Track Calo Clusters (TCC)

Z ATL-PHYS-PUB-2017-015

Make use of excellent angular resolution of track for substructure

• Resolution-based track-to-cluster matching

$$\Delta R < \sqrt{\sigma_{ ext{cluster}}^2 + \sigma_{ ext{track}}^2}$$

- resulting in 3 different constituents:
 - combined: clusters matched to tracks from primary vertex (PV)
 - charged: tracks from PV not matched to any cluster
 - neutral: clusters not matched to any track (from the PV)
 - Clusters matched to tracks from PU vertices are discarded

Track Calo Clusters (TCC)

ATL-PHYS-PUB-2017-015

Make use of excellent angular resolution of track for substructure

- Each track can be part of multiple combined objects
- And any combined object can include many tracks
- But each track τ defines only one TCC with the 4-vector

$$p_{\tau}^{\mathsf{TCC}} = (p_{\mathsf{T}}[\mathcal{M}_{\tau}], \eta^{\tau}, \phi^{\tau}, m[\mathcal{M}_{\tau}])$$

- η,ϕ purely track-based
- p_T , *m* based on TCC energy-sharing equation:

$$\mathcal{M}_{ au} = \sum_{c} p^{c} f_{ au}^{c} \mathcal{F}_{ au}^{c, au}$$

Sum of momenta p^c of clusters c matched to τ weighted by:
 f^c_τ: how much p_T c contributes out of all clusters in τ
 F^c_τ,^τ: how much p_T this τ demands out of all τ

Unified Flow Objects (UFO)

Eur. Phys. J. C 81, 334 (2021)

PFlow Shows best jet mass and p_T resolution at low p_T TCC performs better at high p_T UFO combines the best of both

Why UFO Jets?

🗹 Eur. Phys. J. C 81, 334 (2021)

Extensive effort in ATLAS to find best jet definition for tagging: Eur. Phys. J. C 81, 334 (2021)

- Expected tagger performance evaluated for simple 2-variable cuts:
 - W/Z tagger: m, D₂
 - Top tagger: m, τ₃₂

UFO jets show best performance for simple top tagger:

Why UFO Jets?

🗹 Eur. Phys. J. C 81, 334 (2021)

Extensive effort in ATLAS to find best jet definition for tagging: Eur. Phys. J. C 81, 334 (2021)

- Expected tagger performance evaluated for simple 2-variable cuts:
 - W/Z tagger: m, D₂
 - Top tagger: m, τ₃₂

 \dots as well as simple W tagger:

Grooming

Background rejection for various pileup mitigations and groomings:

Best background rejection with:

- R = 1.0 anti- k_T **UFO** jets
- Pileup Mitigation: Constituent Subtraction + SoftKiller (CS+SK)
- Grooming: Soft Drop (SD) with $\beta = 1.0 \ z_{cut} = 0.1$

Other factors: Good pileup stability, mass resolution, ...

Grooming: Soft Drop

- Re-cluster using Cambridge/Aachen (closer constituents first)
- Consider splitting history
- At each split either keep both or reject one branch
- Based on splitting condition:
- Tunable paramters determined empirically: $z_{cut} = 0.1$, $\beta = 1.0$

Jet Calibration

Jet Calibration

C Eur. Phys. J. C 81 (2021) 689 Reconstructed

Pileup Correction

 $p_{\mathrm{T}}^{\mathrm{corr}} = p_{\mathrm{T}}^{\mathrm{reco}} - \rho \times A - \alpha \times N_{\mathrm{PV}} - \beta \times \langle \mu \rangle$

- Jet-Area based correction
 - For in-time PU, based on event energy density ρ and jet area A

Reconstructed

iets

Residual pile-up

correction

- Jet-Area based correction
 - For in-time PU, based on event energy density ρ and jet area A
- Residual correction

p₊-density-based

pile-up correction

 Based on number of primary vertices N_{PV} (in-time) and avg. number of bunch-crossing (out-of-time) over multiple events

PU correction applied to small (R=0.4) jets only

Large (R=1.0) jets: CS+SK PU mitigation + SoftDrop before MC calibration instead

- Calculate *E* response in bins of η and $E_{\rm true}$ in MC
- Numerical inversion yields calibration factors
- Origin correction corrects jet η
- Largest calibration step that brings response on average to 1

Reconstructed

iets

p₊-density-based

pile-up correction

Residual pile-up

Global Sequential Calibration

calibration

• After energy scale calibrated on average, GSC corrects for small differences

calibration

- E.g. for different jet flavours
- Sequentially corrects for each variable
- Only for small (R=0.4) jets

GSC improves JER by applying different corrections for different population of jets (e.g. q/g initiated)

Global Sequential Calibration

- After energy scale calibrated on average, GSC corrects for small differences
- E.g. for different jet flavours
- Sequentially corrects for each variable
- Only for small (R=0.4) jets

GSC improves JER by applying different corrections for different population of jets (e.g. q/g initiated) but leaves JES on average the same

In-situ calibration in data

Corrects jets with high uncertainty (e.g. forward) based on well-known (photons, central jets...) objects

Jet Energy Resolution (JER) after full calibration for EMTopo and PFlow R=0.4 jets

17/21

Recent Developments: ML Jet Calibration

Jet Calibration: GNNC

Global NN Calibration (GNNC)

- GSC Does not exploit correlations of variables
- New method (GNNC) uses MLP trained to predict p_T response
- \rightarrow Improvement over full p_{T} range

19/21

Simultaneous Calibration of Jet Energy and Mass using ML

LargeR DNN Calibration: Results

Response: E

Improvement across the board

- DNN: better closure than standard calib. in response for E and M
- M response stable even in low and high $p_{\rm T}$ regime
- Resolution drastically improved
- Less dependence on η , pileup, MC generator for E and M
- More stable across different processes (H, W/Z, top) for E and M
- More stable across different flavours (q/g) for E and M

LargeR DNN Calibration: Results

Improvement across the board

- DNN: better closure than standard calib. in response for E and M
- M response stable even in low and high p_T regime
- Resolution drastically improved
- Less dependence on $\eta,$ pileup, MC generator for E and M
- More stable across different processes (H, W/Z, top) for E and M
- More stable across different flavours $\left(q/g\right)$ for E and M

Summary

Appendix

Particle Flow (PFlow)

PFlow makes use of tracking information at constituent level shows great JER improvement over calo jets in low-*p*T Especially in the central region

Track Selection

- $\bullet~\geq 9$ hits in Si detectors
- No missing pixels in track
- $|\eta| < 2.5, \ 0.5 > p_{\rm T} > 40 \ {
 m GeV}$
- Not matched to $e \text{ or } \mu$

Track-cluster matching

• Matched to cluster with minimum distance metric

$$\Delta R' = \sqrt{\left(\frac{\Delta \Phi}{\sigma_{\Phi}}\right)^2 + \left(\frac{\Delta \eta}{\sigma_{\eta}}\right)^2} < 1.64$$

 σ : ang. cluster widths

• And
$$\frac{E^{\text{clus}}}{p^{\text{trk}}} > 0.1$$

E/p Correction

• Avg deposited energy of particle:

 $\langle E_{\rm dep} \rangle = \rho^{\rm trk} \langle E_{\rm ref}^{\rm clus} / \rho_{\rm ref}^{\rm trk} \rangle$

- $\langle E_{\rm ref}^{\rm clus}/p_{\rm ref}^{\rm trk} \rangle$ measured in isolated single π
- Sum *E* of clusters in $\Delta R = 0.4$ cone around track
- Binned in p^{trk}_T, η^{trk}, LHED (Layer of Highest Density)

low- p_{T} :

in isolated single hadrons inclusive

E/p Correction

• Avg deposited energy of particle:

 $\langle E_{\rm dep} \rangle = \rho^{\rm trk} \langle E_{\rm ref}^{\rm clus} / \rho_{\rm ref}^{\rm trk} \rangle$

- $\langle E_{\rm ref}^{\rm clus}/p_{\rm ref}^{\rm trk} \rangle$ measured in isolated single π
- Sum *E* of clusters in $\Delta R = 0.4$ cone around track
- Binned in p^{trk}_T, η^{trk}, LHED (Layer of Highest Density)

Layer of highest Density (LHED)

• Energy density of *j*th cell in *i*th calo layer:

$$\rho_{ij} = \frac{E_{ij}}{V_{ij}} \left(\text{GeV} / X_0^3 \right)$$

E: energy, V : volume of cell measured in rad length X

• Weighted based on proximit to track by gaussian with width $\Delta R = 0.035$

• Avg *E* density for each layer:

$$\langle
ho'
angle_i = \sum_j w_{ij}
ho_{ij}$$

 \rightarrow LHED is layer with max change of ρ' :

$$\Delta \rho_i' = \frac{\langle \rho' \rangle_i - \langle \rho' \rangle_{i-1}}{d_i - d_{i-1}}$$

Recover Split Showers

- Often particles deposit energy in more than 1 cluster
- If single/multi cluster discriminant:

$$S(E^{ ext{clus}}) = rac{E^{ ext{clus}} - \langle E_{ ext{dep}}
angle}{\sigma(E_{ ext{dep}})} < -1$$

recover clusters within $\Delta R < 0.2$ of track

Recover Split Showers

- Often particles deposit energy in more than 1 cluster
- If single/multi cluster discriminant:

$$S(E^{ ext{clus}}) = rac{E^{ ext{clus}} - \langle E_{ ext{dep}}
angle}{\sigma(E_{ ext{dep}})} < -1$$

recover clusters within $\Delta R < 0.2$ of track

Cell-by-cell subtraction

• If $\langle E_{dep} \rangle = p^{trk} \langle E_{ref}^{clus} / p_{ref}^{trk} \rangle$ after correction $> \sum_{i \text{ matched}} E_i^{clus}$: all clusters are removed

- If $\langle E_{dep} \rangle = \rho^{trk} \langle E_{ref}^{clus} / \rho_{ref}^{trk} \rangle$ after correction $> \sum_{i \text{ matched}} E_i^{clus}$: all clusters are removed
- Else: clusters in rings around track subtracted from highest-to-lowest energy density
- In each layer, starting in LHED
- Until $E_{after \ subtr} < \langle E_{dep} \rangle$

- If $\langle E_{dep} \rangle = \rho^{trk} \langle E_{ref}^{clus} / \rho_{ref}^{trk} \rangle$ after correction $> \sum_{i \text{ matched}} E_i^{clus}$: all clusters are removed
- Else: clusters in rings around track subtracted from highest-to-lowest energy density
- In each layer, starting in LHED
- Until $E_{after \ subtr} < \langle E_{dep} \rangle$

- If $\langle E_{dep} \rangle = p^{trk} \langle E_{ref}^{clus} / p_{ref}^{trk} \rangle$ after correction $> \sum_{i \text{ matched}} E_i^{clus}$: all clusters are removed
- Else: clusters in rings around track subtracted from highest-to-lowest energy density
- In each layer, starting in LHED
- Until $E_{after \ subtr} < \langle E_{dep} \rangle$

- If $\langle E_{dep} \rangle = \rho^{trk} \langle E_{ref}^{clus} / \rho_{ref}^{trk} \rangle$ after correction $> \sum_{i \text{ matched}} E_i^{clus}$: all clusters are removed
- Else: clusters in rings around track subtracted from highest-to-lowest energy density
- In each layer, starting in LHED
- Until $E_{after \ subtr} < \langle E_{dep} \rangle$
- Then scale cluster energies accordingly

Remnant removal

- If remaining cell $E < 1.5\sigma$ of width of $p^{trk} \langle E_{ref}^{clus} / p_{ref}^{trk} \rangle$:
 - Cluster-system likely produced by single particle
 - \rightarrow Remaining *E* removed
- Else:
 - likely produced by multiple particles
 - \rightarrow Remaining *E* retained

Done!

Final constituents: Remaining clusters and tracks \rightarrow Goal of pflow procedure: Avoid double-counting between them

Why UFO Jets?

Calorimeter only:

 LCTopo: Topological calorimeter clusters

Combining PFlow and TCC:

Combined with tracking:

- PFlow: Particle Flow Objects
 - Low p_T: Use track 4-vector for charged particles, subtract energy from cluster 4-vectors
 - High *p*_T: Use cluster 4-vectors, ignore tracks
- TCC: Track Calo Clusters
 - Low *p*_T: Use cluster 4-vectors, ignore tracks
 - High *p*_T: Split clusters using tracks, get energy from clusters but angles from tracks

• UFO combines TCC and PFlow to achieve optimal performance over a broad kinematic (*p*_T) range

LargeR DNN Calibration: Training

Steps	\mathbf{N}^{o}	Number of epochs	Batch size	Loss
	1	2	15000	MDNA
Initialisation	2	2	25000	MDNA
	3	2	35000	MDNA truncated (4.0σ)
	4	2	15000	MDNA truncated (3.5 or)
Common training	5	6	95000	MDNA truncated (3.5 \sigma)
	6	6	95000	MDNA truncated (3.5 or)
	7	6	125000	MDNA truncated (3.2 or)
	8	6	125000	MDNA truncated (3.2 or)
	9	10	155000	MDNA truncated (3.0 or)
	10	15	95000	MDNA truncated ($E{:}\;3.0\sigma,m{:}\;2.0\sigma$)
Exclusive mass training	11	50	95000	MDN truncated (1.0 \sigma)

Training Strategy

- Multi-stage training process
 - First E & M simultaneous
 - Then only M
- Alternative losses used in some training stages
 - To accommodate for asymmetric response:

Asymmetric MDN:

$$P_{\text{MDNA}}(x) = \begin{cases} 1e^{(x-\mu)^2/2\sigma_1} & \text{if } x < \mu \\ 1e^{(x-\mu)^2/2\sigma_2} & \text{if } x \ge \mu \end{cases}$$

Truncated MDN:

$$P_{ ext{trunc}}(x) = egin{cases} 1 ext{e}^{(x-\mu)^2/2\sigma} & ext{if} |x < \mu| < N\sigma \ 0 & ext{otherwise} \end{cases}$$

LargeR DNN Calibration: Eta Annotation

Complex dependence on η

- With sharp changes from bin-to-bin due to detector geometry/instrumentation
- Difficult for DNN to adapt to this
- Annotation strategy
 - $\rightarrow~{\rm Add}$ 12 features that are functions of η
 - ightarrow Encoding distance to different η regions

• Clear improvement:

W/Z tagger (NN/ANN)

- $rac{C}{C}$ ATL-PHYS-PUB-2021-029 D₂, C₂ Energy correlation ratios
 - τ_{21} *N*-subjettiness
 - $R_2^{\rm FW}$ Fox-Wolfram moment
 - \mathcal{P} Planar flow
 - a₃ Angularity
 - A Aplanarity
 - $Z_{\rm cut}$ Z-Splitting scales
 - $\sqrt{d_{12}}$ d-Splitting scales
- $Kt\Delta R \quad k_t$ -subjet ΔR
 - *n*trk number of tracks

Top tagger (DNN) ATL-PHYS-PUB-2021-028

- $\tau_1, \ \tau_2, \ \tau_3, \ \tau_4$ *N*-subjettiness
 - $\sqrt{d_{12}}, \sqrt{d_{23}}$ Splitting scales
- $\mathsf{ECF}_1, \ \mathsf{ECF}_2, \ \mathsf{ECF}_3$ Energy correlation (EC) functions
 - C_2, D_2 EC ratios
 - L_2, L_3 Generalised EC ratios
 - Q_W Invariant mass / virtuality
 - T_{M} Thrust major

Number of Ghost-Associated Tracks n_{trk}

JHEP04(2008)005

ntrk: number of tracks

- With $p_{\rm T} > 500 {\rm ~MeV}$
- Ghost-associated to jet
- ightarrow Powerful q/g discriminant

Ghost-associated jet area

- Add dense coverage of 'infinitely' soft 'ghost' constituents
- Count how many are clustered within the jet

Grooming Techniques

