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Types of Jets in ATLAS
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Jet definitions

• Particle (truth) jets (MC only)

• Track jets: tracker info only

• Calo jets: calo info only

• LCTopo, EMTopo

• Combined track+calo jets

• ParticleFlow, UFO,

TrackCaloCluster

Anti-kT jet algorithm
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• Mostly circular in y − φ plane

• Used for most purposes
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Constituents:

TopoClusters
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Topo Clusters
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Cell noise ratio: ζEM
cell =

EEM
cell

σEM
noise,cell

Topological Clusters

of E deposits in calorimeter cells

→ algorithm:

1 Seed: Find cells with energy

E > 4× |ζ|

2 Growth: Neighbors with

E > 2× |ζ| are added

3 Boundary: any neighboring

cells are added

(no ζ requirement)

4 Split: Breaks up clusters with

multiple maxima

Jets build from TopoClusters are called EMTopo Jets

EM: Electromagnetic scale

→ ATLAS calorimeters are non-compensating

→ EM response ≈ 1, hadronic response < 1
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Local Cluster Weighting (LCW)
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• TopoClusters are identified to be EM or had by likelihood PEM
clus

• Their momenta are reweighted (ω) by

• Difference in response due to non-compensating calorimeter

• Energy falling in unclustered cells

• Inactive/dead regions of the detector

Jets build from TopoClusters+LCW are called LCTopo Jets

used for large-R (R = 1.0) jets in Run 2
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• Difference in response due to non-compensating calorimeter
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• Inactive/dead regions of the detector
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• Difference in response due to non-compensating calorimeter
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• Inactive/dead regions of the detector
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Recent Development:

ML Cluster Calibration
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π0 vs π± Shower Classification

First step in cluster calibration: Differentiate EM from hadronic clusters
Non-compensating ATLAS calorimeter requires different calibrations for neutral/charged clusters

π0 vs π± classification performance
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Baseline used in LCW: PEM
clus

• Binned EM-scale cluster variables

• Total cluster energy EEM
cluster

• Pseudorapidity η

• W Longitudinal depth λclus

• W 1st cell energy moment 〈ρcell〉

• Combined into likelihood PEM
clus

Individual calorimeter cell signals

→ As point clouds (GNN, PFN)

→ Or projected on images (CNN)

Observations

• All point cloud methods significantly

outperform baseline PEM
clus
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Energy Regression

π± cluster energy response
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Second step: Energy Calibration

Observations

• GNN performs best wrt.

response and width

• Followed by Deep Sets

• New: Bayesian NN (BNN)

Cluster Energy Resolution
Point Cloud Methods
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Pileup Mitigation

at Constituent Level
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Constituent Subtraction (CS)
W JHEP 1406 (2014) 092
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• Add ghosts in grid of

Ag = η × φ = 0.1× 0.1

• With pgT = Ag × ρ
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energy density in event

• Measure of PU in event

• Subtract pgT from pT of

constituents c within ∆R(g , c)
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Mass profile with CS closer to

no-PU than with area-based alone 6/21
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Soft Killer (SK)
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• CS: Scales constituents

• SK: Removes constituents

• Consider constituents in η, φ grid

• All constituents with pT < pcut
T are removed

• pcut
T determined such that half of grid cells are empty

ATLAS uses CS+SK for R=1.0 jets
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Constituents:

Adding Tracks
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Adding Tracker Information

the tracker pT resolution

σ

(
1
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)
= 0.036% · pT ⊕ 1.3%

is better than the calorimeter E

resolution

σ(E )
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W source

Additionally, the tracker has better

acceptance (threshold) for soft

particles

0 100 200 300 400 500 600 700 800 900 1000

 or E [GeV]
T

p

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E(E
)

σ
 o

r 
Tp1

σ

rough sketch!

T
p

E

Jet definitions used in Run 3 (and partly Run 2)

rely on calo+track information
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Particle Flow (PFlow)
W Eur. Phys. J. C77 (2017) 446

PFlow makes use of tracking information at constituent level

shows great JER improvement over calo jets in low-pT

Especially in the central region
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The Need for LargeR jets
W arxiv:1306.4945

In addition to R=0.4 many analyses use R=1.0 jets

Best option depends on pT(V ):

• Separation inversely

proportional to transverse

momentum pT

∆R(q, q′) ≈ 2mW

pWT

• For mW = 80 GeV, R = 0.4

cones around qq′ overlap

(∆R < 0.8) at pT > 200 GeV

→ Reconstruct merged
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Jet-tagging can be done to identify initiator of R=1.0 jets

→ need good mass and substructure resolution
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Track Assisted Jet Mass mTA

W ATLAS-CONF-2016-035

Combine track with calo information for jet-mass definition

• Tracks are W ghost-associated to

calo-jet, yielding track mass

mtrack

• Scaled by calo/track correction

factor accounting for neutral

components

mTA =
pcalo

T

ptrack
T

×mtrack

• Linearly combined with calo

mass according to resolution σ
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mcomb = mcalo

σ−2
mcalo

σ−2
mcalo + σ−2

mTA

+ mTA

σ−2
mTA

σ−2
mcalo + σ−2

mTA

→ Improved mass resolution over the whole pT range

→ but only for mass, not for variables 11/21

http://cds.cern.ch/record/2200211
https://arxiv.org/abs/0707.1378
http://cds.cern.ch/record/2200211


Track Calo Clusters (TCC)
W ATL-PHYS-PUB-2017-015

Make use of excellent angular resolution of track for substructure

• Resolution-based track-to-cluster matching

∆R <
√
σ2

cluster + σ2
track

• resulting in 3 different constituents:

• combined: clusters matched to tracks from primary vertex (PV)

• charged: tracks from PV not matched to any cluster

• neutral: clusters not matched to any track (from the PV)

• Clusters matched to tracks from PU vertices are discarded
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Track Calo Clusters (TCC)
W ATL-PHYS-PUB-2017-015

Make use of excellent angular resolution of track for substructure

• Each track can be part of multiple combined objects

• And any combined object can include many tracks

• But each track τ defines only one TCC with the 4-vector

pTCC
τ = (pT[Mτ ], ητ , φτ ,m[Mτ ])

• η, φ purely track-based

• pT,m based on TCC energy-sharing equation:

Mτ =
∑
c

pc f cτ F c,τ
τ

• Sum of momenta pc of clusters c matched to τ weighted by:

f cτ : how much pT c contributes out of all clusters in τ

F c,τ
τ : how much pT this τ demands out of all τ
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Unified Flow Objects (UFO)
W Eur. Phys. J. C 81, 334 (2021)

PFlow Shows best jet mass and pT resolution at low pT

TCC performs better at high pT

UFO combines the best of both
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Why UFO Jets?
W Eur. Phys. J. C 81, 334 (2021)

Extensive effort in ATLAS to find best jet definition for tagging:

Eur. Phys. J. C 81, 334 (2021)

• Expected tagger performance evaluated for simple 2-variable cuts:

• W /Z tagger: m, D2

• Top tagger: m, τ32

UFO jets show best performance for simple top tagger:

500 GeV < ptrue
T < 1000 GeV 1000 GeV < ptrue

T < 1500 GeV
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Why UFO Jets?
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Extensive effort in ATLAS to find best jet definition for tagging:

Eur. Phys. J. C 81, 334 (2021)

• Expected tagger performance evaluated for simple 2-variable cuts:

• W /Z tagger: m, D2

• Top tagger: m, τ32

...as well as simple W tagger:

500 GeV < ptrue
T < 1000 GeV 1000 GeV < ptrue

T < 1500 GeV
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Grooming

14/21



Optimisation of Jet Definition

Background rejection for various pileup mitigations and groomings:

Here: 2-variable top tagger, high-pT range
(plots for W and low-pT in backup)
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Best background rejection with:

• R = 1.0 anti-kT UFO jets

• Pileup Mitigation: Constituent Subtraction + SoftKiller (CS+SK)

• Grooming: Soft Drop (SD) with β = 1.0 zcut = 0.1

Other factors: Good pileup stability, mass resolution, ... 15/21

https://link.springer.com/article/10.1140/epjc/s10052-021-09054-3


Grooming: Soft Drop

W
S

V
J

w
or

k
sh

o
p

2
0

2
2

• Re-cluster using

Cambridge/Aachen

(closer constituents first)

• Consider splitting history

• At each split either keep both

or reject one branch

• Based on splitting condition:

• Tunable paramters determined

empirically: zcut = 0.1, β = 1.0 W
H

C
W

2
0

2
3

16/21

https://indico.cern.ch/event/1133166/timetable/#sc-1-1-jet-substructure-overvi
https://indico.cern.ch/event/1268247/contributions/5464275/


Jet Calibration

16/21



Jet Calibration
W Eur. Phys. J. C 81 (2021) 689

Pileup Correction

pcorr
T = preco

T −ρ× A− α× NPV − β × 〈µ〉
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• Jet-Area based correction
• For in-time PU, based on event energy density ρ and jet area A

• Residual correction
• Based on number of primary vertices NPV (in-time) and

avg. number of bunch-crossing (out-of-time) over multiple events
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• Residual correction
• Based on number of primary vertices NPV (in-time) and
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Jet Calibration
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• Jet-Area based correction
• For in-time PU, based on event energy density ρ and jet area A

• Residual correction
• Based on number of primary vertices NPV (in-time) and

avg. number of bunch-crossing (out-of-time) over multiple events
17/21

https://link.springer.com/article/10.1140/epjc/s10052-021-09402-3
https://link.springer.com/article/10.1140/epjc/s10052-021-09402-3


Jet Calibration
W Eur. Phys. J. C 81 (2021) 689

PU correction applied to small (R=0.4) jets only

Large (R=1.0) jets: CS+SK PU mitigation + SoftDrop

before MC calibration instead
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Jet Calibration
W Eur. Phys. J. C 81 (2021) 689

• Calculate E response in bins of

η and Etrue in MC

• Numerical inversion yields

calibration factors

• Origin correction corrects jet η

• Largest calibration step that

brings response on average to 1
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Jet Calibration
W Eur. Phys. J. C 81 (2021) 689

pT resolution after each GSC step
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Global Sequential Calibration

• After energy scale calibrated on

average, GSC corrects for small

differences

• E.g. for different jet flavours

• Sequentially corrects for each

variable

• Only for small (R=0.4) jets

GSC improves JER by applying different corrections

for different population of jets (e.g. q/g initiated)
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Jet Calibration
W Eur. Phys. J. C 81 (2021) 689

pT response after each GSC step
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Global Sequential Calibration

• After energy scale calibrated on

average, GSC corrects for small

differences

• E.g. for different jet flavours

• Sequentially corrects for each

variable

• Only for small (R=0.4) jets

GSC improves JER by applying different corrections

for different population of jets (e.g. q/g initiated)

but leaves JES on average the same

17/21

https://link.springer.com/article/10.1140/epjc/s10052-021-09402-3
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Jet Calibration
W Eur. Phys. J. C 81 (2021) 689

In-situ calibration in data

Corrects jets with high uncertainty (e.g. forward)

based on well-known (photons, central jets...) objects

17/21
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Jet Calibration
W Eur. Phys. J. C 81 (2021) 689

Jet Energy Resolution (JER)

after full calibration

for EMTopo and PFlow R=0.4 jets
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Recent Developments:

ML Jet Calibration

17/21



Jet Calibration: GNNC

Response
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Global NN Calibration (GNNC)

• GSC Does not exploit

correlations of variables

• New method (GNNC) uses

MLP trained to predict pT

response

→ Improvement over full pT range

Resolution
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JES + JMS

Simultaneous Calibration of Jet Energy and Mass using ML

Model Architecture
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Method:

• Predict responses

RE = Ereco

Etrue
, RM = Mreco

Mtrue

• Modeled by Gaussians

ypred = (µE , σE , µm, σm)pred

⇒ Calibration Factors:

Ecalib = Ereco

µE
pred

,Mcalib = Mreco

µM
pred

Mixture density network (MDN) loss:

LMDN = −log(P(ytrue, ypred)) = log(σpred) +
1

2

(ytrue − µpred)2

σ2
pred
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LargeR DNN Calibration: Results

Response: E
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Improvement across the board

• DNN: better closure than standard calib. in response for E and M

• M response stable even in low and high pT regime

• Resolution drastically improved

• Less dependence on η, pileup, MC generator for E and M

• More stable across different processes (H, W/Z, top) for E and M

• More stable across different flavours (q/g) for E and M
20/21
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LargeR DNN Calibration: Results

Resolution: E
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Improvement across the board

• DNN: better closure than standard calib. in response for E and M

• M response stable even in low and high pT regime

• Resolution drastically improved

• Less dependence on η, pileup, MC generator for E and M

• More stable across different processes (H, W/Z, top) for E and M

• More stable across different flavours (q/g) for E and M
20/21
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Summary
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Appendix



Particle Flow (PFlow)

PFlow makes use of tracking information at constituent level

shows great JER improvement over calo jets in low-pT

Especially in the central region
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How to Make a PFlow Jet

Track Selection

• ≥ 9 hits in Si detectors

• No missing pixels in track

• |η| < 2.5, 0.5 > pT > 40 GeV

• Not matched to e or µ
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How to Make a PFlow Jet

Track-cluster matching

• Matched to cluster with

minimum distance metric

∆R ′ =

√(
∆Φ

σΦ

)2

+

(
∆η

ση

)2

< 1.64

σ: ang. cluster widths

• And E clus

ptrk > 0.1 W
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How to Make a PFlow Jet

E/p Correction

• Avg deposited energy of

particle:

〈Edep〉 = ptrk〈E clus
ref /p

trk
ref 〉

• 〈E clus
ref /p

trk
ref 〉 measured in

isolated single π

• Sum E of clusters in ∆R = 0.4

cone around track

• Binned in ptrk
T , ηtrk, LHED

(Layer of Highest Density)

low-pT:

in isolated single hadrons inclusive

pp collisions
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How to Make a PFlow Jet

E/p Correction

• Avg deposited energy of

particle:

〈Edep〉 = ptrk〈E clus
ref /p

trk
ref 〉

• 〈E clus
ref /p

trk
ref 〉 measured in

isolated single π

• Sum E of clusters in ∆R = 0.4

cone around track

• Binned in ptrk
T , ηtrk, LHED

(Layer of Highest Density)

higher pT:

in W → τ(→ πν)ν
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How to Make a PFlow Jet

Layer of highest Density (LHED)

• Energy density of jth cell in ith

calo layer:

ρij =
Eij

Vij

(
GeV/X 3

0

)
E : energy, V : volume of cell measured in rad length X

• Weighted based on proximit to

track by gaussian with width

∆R = 0.035

X

• Avg E density for each layer:

〈ρ′〉i =
∑
j

wijρij

→ LHED is layer with max change

of ρ′:

∆ρ′i =
〈ρ′〉i − 〈ρ′〉i−1

di − di−1

di : depth of layer i



How to Make a PFlow Jet

Recover Split Showers

• Often particles deposit energy

in more than 1 cluster

• If single/multi cluster

discriminant:

S(E clus) =
E clus − 〈Edep〉
σ(Edep)

< −1

recover clusters within

∆R < 0.2 of track
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How to Make a PFlow Jet

Recover Split Showers

• Often particles deposit energy

in more than 1 cluster

• If single/multi cluster

discriminant:

S(E clus) =
E clus − 〈Edep〉
σ(Edep)

< −1

recover clusters within

∆R < 0.2 of track
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How to Make a PFlow Jet

Cell-by-cell subtraction

• If 〈Edep〉 = ptrk〈E clus
ref /p

trk
ref 〉 after

correction >
∑

i matched E
clus
i :

all clusters are removed

cell-by-cell subtraction
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How to Make a PFlow Jet

Cell-by-cell subtraction

• If 〈Edep〉 = ptrk〈E clus
ref /p

trk
ref 〉 after

correction >
∑

i matched E
clus
i :

all clusters are removed

• Else: clusters in rings around

track subtracted from

highest-to-lowest energy density

• In each layer, starting in LHED

• Until Eafter subtr < 〈Edep〉

cell-by-cell subtraction
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How to Make a PFlow Jet

Cell-by-cell subtraction

• If 〈Edep〉 = ptrk〈E clus
ref /p

trk
ref 〉 after

correction >
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i matched E
clus
i :

all clusters are removed

• Else: clusters in rings around
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highest-to-lowest energy density

• In each layer, starting in LHED

• Until Eafter subtr < 〈Edep〉

cell-by-cell subtraction

W
E

u
r.

P
h

ys
.

J.
C

7
7

(2
0

1
7

)
4

6
6

https://link.springer.com/article/10.1140/epjc/s10052-017-5031-2


How to Make a PFlow Jet

Cell-by-cell subtraction

• If 〈Edep〉 = ptrk〈E clus
ref /p

trk
ref 〉 after

correction >
∑

i matched E
clus
i :

all clusters are removed

• Else: clusters in rings around

track subtracted from

highest-to-lowest energy density

• In each layer, starting in LHED

• Until Eafter subtr < 〈Edep〉

cell-by-cell subtraction

W
E

u
r.

P
h

ys
.

J.
C

7
7

(2
0

1
7

)
4

6
6

https://link.springer.com/article/10.1140/epjc/s10052-017-5031-2


How to Make a PFlow Jet

Cell-by-cell subtraction

• If 〈Edep〉 = ptrk〈E clus
ref /p

trk
ref 〉 after

correction >
∑

i matched E
clus
i :

all clusters are removed

• Else: clusters in rings around

track subtracted from

highest-to-lowest energy density

• In each layer, starting in LHED

• Until Eafter subtr < 〈Edep〉
• Then scale cluster energies

accordingly

cell-by-cell subtraction
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How to Make a PFlow Jet

Remnant removal

• If remainging cell E < 1.5σ of

width of ptrk〈E clus
ref /p

trk
ref 〉:

• Cluster-system likely

produced by single particle

→ Remaining E removed

• Else:

• likely produced by multiple

particles

→ Remaining E retained

W



How to Make a PFlow Jet

Done!

Final constituents: Remaining clusters and tracks

→ Goal of pflow procedure: Avoid double-counting between them



Why UFO Jets?

Calorimeter only:

• LCTopo: Topological

calorimeter clusters

Calorimeter

Tracker
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Combined with tracking:

• PFlow: Particle Flow Objects

• Low pT: Use track 4-vector for

charged particles, subtract energy

from cluster 4-vectors

• High pT: Use cluster 4-vectors,

ignore tracks

• TCC: Track Calo Clusters

• Low pT: Use cluster 4-vectors, ignore

tracks

• High pT: Split clusters using tracks,

get energy from clusters but angles

from tracks

Combining PFlow and TCC:

• UFO combines TCC and PFlow to achieve optimal performance

over a broad kinematic (pT) range

https://indico.cern.ch/event/775951/contributions/3903461/


LargeR DNN Calibration: Training
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Training Strategy

• Multi-stage training process

• First E & M simultaneous

• Then only M

• Alternative losses used in some

training stages

• To accommodate for

asymmetric response:

Asymmetric MDN:

PMDNA(x) =

{
1e(x−µ)2/2σ1 ifx < µ

1e(x−µ)2/2σ2 ifx ≥ µ

Truncated MDN:

Ptrunc(x) =

{
1e(x−µ)2/2σ if|x < µ| < Nσ

0 otherwise

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2023-02/


LargeR DNN Calibration: Eta Annotation
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Complex dependence on η

• With sharp changes from bin-to-bin due to

detector geometry/instrumentation

• Difficult for DNN to adapt to this

• Annotation strategy

→ Add 12 features that are functions of η

→ Encoding distance to different η regions

• Clear improvement:
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2023-02/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2023-02/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2023-02/


Substructure Variables for Tagging

W/Z tagger (NN/ANN)

W ATL-PHYS-PUB-2021-029
D2, C2 Energy correlation ratios

τ21 N-subjettiness

RFW
2 Fox-Wolfram moment

P Planar flow

a3 Angularity

A Aplanarity

Zcut Z−Splitting scales√
d12 d−Splitting scales

Kt∆R kt-subjet ∆R

ntrk number of tracks

Top tagger (DNN)

W ATL-PHYS-PUB-2021-028
τ1, τ2, τ3, τ4 N-subjettiness√

d12,
√
d23 Splitting scales

ECF1, ECF2, ECF3 Energy correlation (EC) functions

C2, D2 EC ratios

L2, L3 Generalised EC ratios

QW Invariant mass / virtuality

TM Thrust major

http://cds.cern.ch/record/2777009
http://cds.cern.ch/record/2776782


Number of Ghost-Associated Tracks ntrk

JHEP04(2008)005

ntrk: number of tracks

• With pT > 500 MeV

• Ghost-associated to jet

→ Powerful q/g discriminant

Ghost-associated jet area

• Add dense coverage of

’infinitely’ soft ’ghost’

constituents

• Count how many are clustered

within the jet

ntrk as q/g discriminant
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https://iopscience.iop.org/article/10.1088/1126-6708/2008/04/005
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-009/
https://iopscience.iop.org/article/10.1088/1126-6708/2008/04/005


Grooming Techniques

W
S

V
J

w
or

k
sh

o
p

2
0

2
2

https://indico.cern.ch/event/1133166/timetable/#sc-1-1-jet-substructure-overvi
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