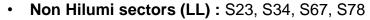


ARC cryogenic capacity in the HL-LHC era

Benjamin Bradu (TE-CRG)


228th HiLumi WP2 Meeting - 02/07/2024

Content

- Cryo infrastructures evolutions for HL-LHC
- Consequences for the ARC beam screen cryo capacities
- What will happen after LS3 for LHC cryogenics ?
- BST project
- Conclusion

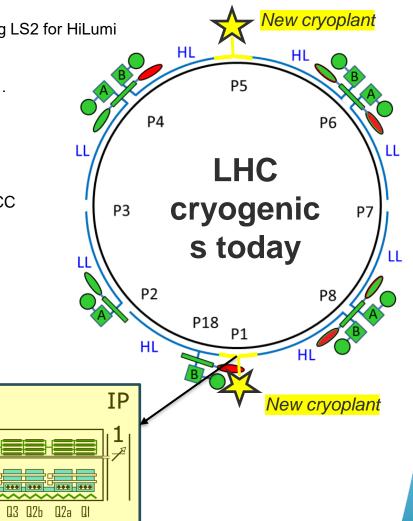
Cryo infrastructures evolutions for HL-LHC (reminder)

- No changes in cryogenics infrastructures (cryoplants "A")
- > PS: the cryoplant "A" for S34 was already upgraded during LS2 for HiLumi

Handled by

new cryoplants

D1 CP


DFx

- Hilumi sectors (HL) : S12, S45, S56, S81
 - Existing cryo infrastructures (cryoplants "B") remains but...
 - The IT + DFBX + D2 + associated QRL removed until Q4
 capacity recovery in the existing cryoplants "B" !
 - 2 new cryoplants at P1/P5 will be installed

. <u>: : : : : :</u> . CC . CC

Π7

Will manage the future IT+CP+D1+DFX+DFM+D2+CC (not discussed in this presentation)

IJЮ

to DFR

BS

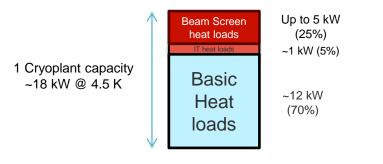
CM

2T

Remain attached

to existing cryoplants "B"

 $\overline{\sim}$


Π.5

Π4

Consequences for the ARC cryo capacities

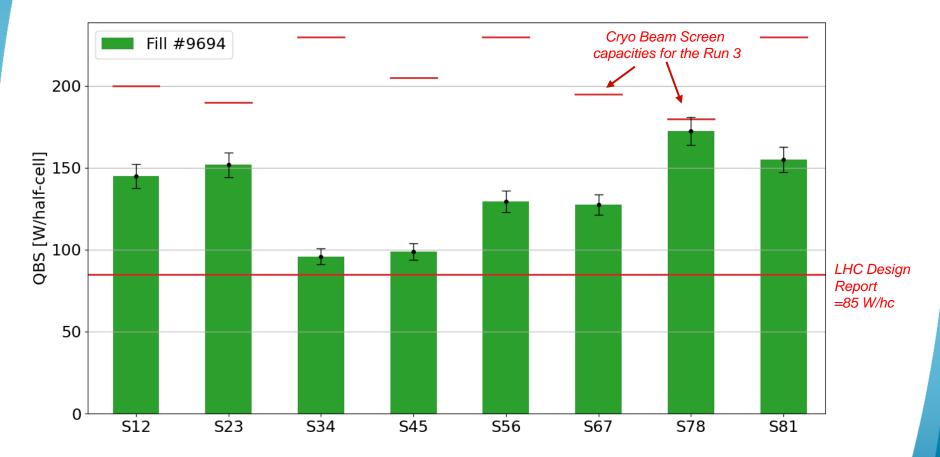
LHC cryoplants are supplying many devices in parallel at different temperatures

- > Thermal shields between 50 K and 75 K
- Main superconducting magnets at 1.9 K (ARC dipoles/quadrupoles)
- Stand Alone superconducting magnets at 4.5 K (D3, Q4, Q5, Q6)
- RF cavities at 4.5 K (at P4 only)
- DFB at 4.5 K with their current leads and superconducting links
- Inner Triplet (IT) at 1.9 K around experiments (dynamic heat loads, depending on luminosity)
- Beam Screens (BS) between 4.5 K and 20 K (dynamic heat loads, depending on beams sync rad + impedance + ecloud)

• Changes for HL-LHC:

Expected changes in HL-LHC	Helium massflow	Q @ 1.9 K [per sector]		BS Capa 4.5 K - 20 K [per half-cell of 53m]	Concerned sectors
Removal of IT/D1 at P1 & P5 in LS3	-12 g/s	-280 W	+1.3 kW	+25 W/hc	S12, S81, S45, S56

The available ARC beam screen cryogenic capacities will slightly increase in HL sectors !

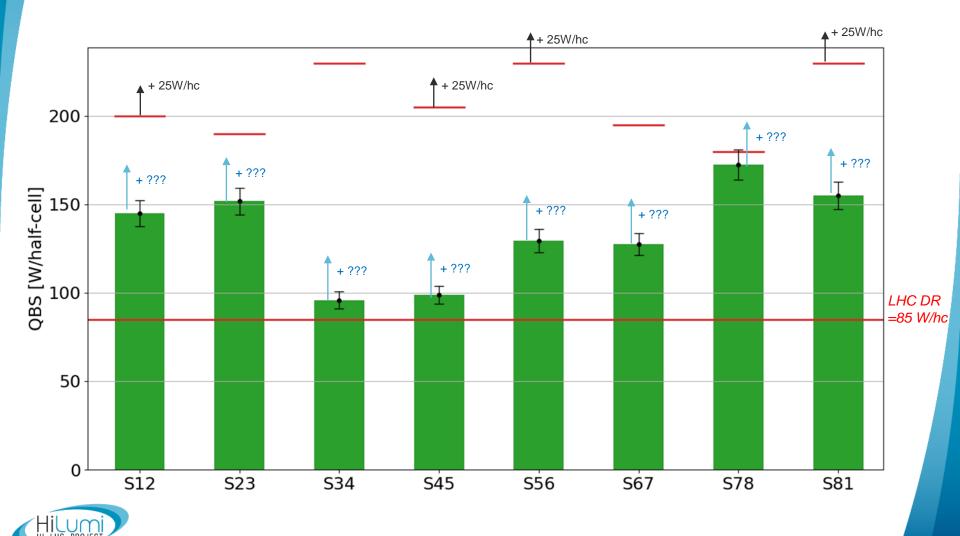


B Bradu - 228th HiLumi WP2 Meeting

No changes expected for HL-LHC

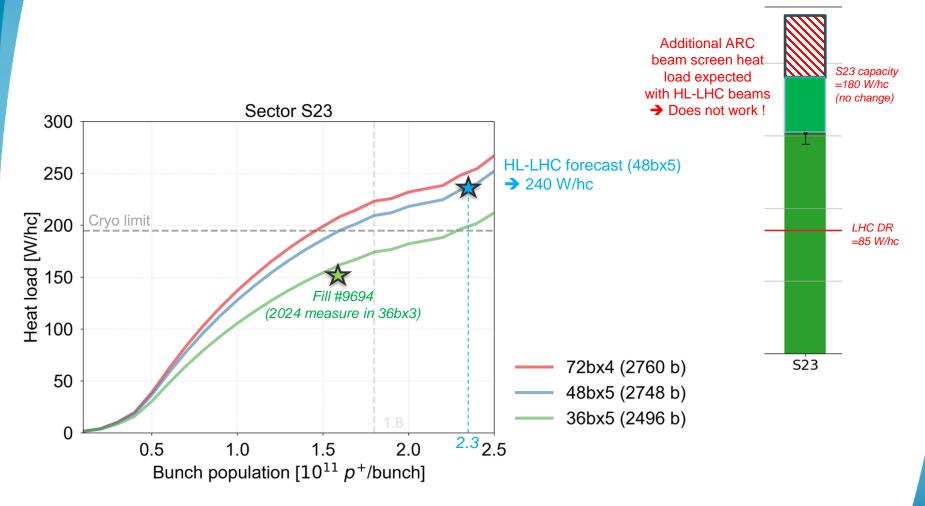
Where are we today (2024) ?

- Beam Screen cryogenic heat load averages in each ARC measured during fill #9694
 - 31st May 2024 with 2352 bunches @ 1.62e11 ppb (3x36b scheme)
- Cryogenics is running at its ultimate limit in S78
 - > BS heat loads are in average more than twice higher than expected


PS: All LHC cryoplants are slightly different and have different capacities & loads (RF, SAM, DFB, triplets, etc.)

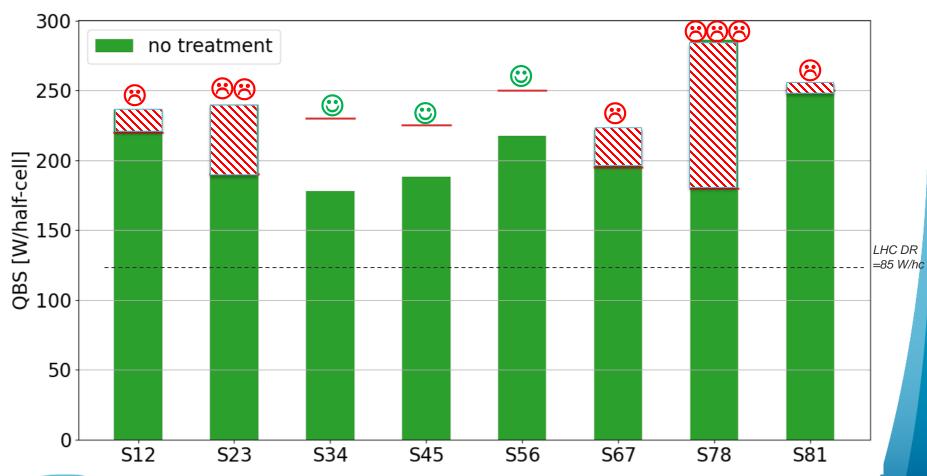
B Bradu - 228th HiLumi WP2 Meeting

What will happen after LS3 ?

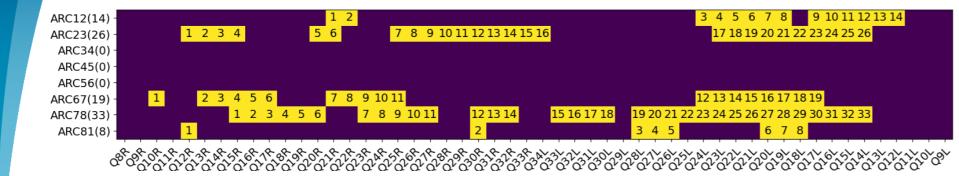

→ARC Beam screen capacities will increase in HL sectors by +25 W/hc (IT/D1 removal)
 →ARC beam screen heat loads will increase due to the HL-LHC beams (depending on filling schemes and intensities)

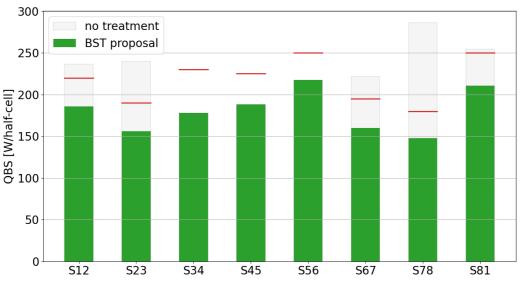
B Bradu - 228th HiLumi WP2 Meeting

HL-LHC beam screen heat load forecast


- E-cloud simulations done by BE-ABP and presented in Chamonix 2023 by Lotta Mether
 - Assuming no BS treatment and no more beam screen surface degradation during LS3 (optimistic scenario)

The same exercise was achieved for each sector


→ Impossible to operate HL-LHC with the forecast beams due to the extra heat loads generated by the e-clouds



B Bradu - 228th HiLumi WP2 Meeting

Proposed solution: Beam Screen Treatment (BST)

- Deposit a thin Amorphous Carbon over the BS surface to reduce the e-clouds heat loads (in situ)
- Project managed by TE-VSC (G. Rosaz)
- Objective is to treat 100 half-cells (2 x 5.3 km) of beam screens during the LS3
- Sector margins after treatment if no more degradation: [34,34,52,37,33,35,32,40] W/hc
- ~15% margin in all sectors is mandatory due to the uncertainly on the treatment efficiency and on potential further BS surface degradations during LS3

Conclusion

LHC cryogenics infrastructures will remain the same for the ARC cooling in the HL-LHC era
 The cryogenic BS capacities for the ARC will slightly increase after LS3 in the HL sectors (~ +10%) due to the removal of the IT+D1 around P1 & P5 from the existing cryoplants

- Nevertheless, the HL-LHC beams will induce up to +150% of heat loads on beam screens due to the e-clouds → not manageable by cryo, 5/8 sectors will be above the ultimate limits !
- Solutions consists in "treating" 2x5 km of beam screens during LS3 to reduce the e-clouds (carbon coating)
 - BST project under study/preparation by TE-VSC, already included in LS3 planning
 - > This solution would allow to restore enough cryo margin in all ARC for HL-LHC beams
- Reducing the e-cloud heat loads handled by the existing LHC cryogenic infrastructures is essential to operate the HL-LHC properly, this is not an option.

