

High Field Magnets

Progress on ISAAC

J. García Matos, <u>C. Martins</u>, F. Toral (CIEMAT) J.C. Pérez (CERN)

19th June 2024

7th Common Coil Joint Meeting

- ISAAC goals & constraints (reminder)
- 2D Design update
 - 34 mm aperture
 - 50 mm aperture
- 3D Design (34mm aperture)
 - Magnetic Maxwell
 - Mechanical Ansys
- Conclusions

- ISAAC goals & constraints (reminder)
- 2D Design update
 - 34 mm aperture
 - 50 mm aperture
- 3D Design (34mm aperture)
 - Magnetic Maxwell
 - Mechanical Ansys
- Conclusions

ISAAC goals & constraints (reminder)

- ISAAC: Investigating Superconducting Assembly to Address Common coil mechanics
- Main goal: learn for the 14 T model with **existing coils**, mostly on **mechanics**
 - Existing RMC coils made at CERN with MQXF strand are selected
 - Mechanics & assembly as simple as possible
 - Provide ≈14 T in the aperture (100% load)
 - Decrease vertical Lorentz force F_y to achieve low vertical preload: free horizontal movement when coils are energized, without friction
 - Assembly with bladder and keys, slight preload just to keep contact between parts
 - Aluminium shell also contributes to hold the forces
 - Goal: To have a horizontal **coil displacement** due to the EMF **below 0.5 mm** to:
 - Reduce the impact on field quality (0.5 mm -> 1% less field in the aperture)
 - Reduce the possibility of sudden coil movements (to avoid quenches)

• ISAAC goals & constraints (reminder)

- 2D Design update
 - 34 mm aperture
 - 50 mm aperture
- 3D Design (34mm aperture)
 - Magnetic Maxwell
 - Mechanical Ansys
- Conclusions

2D Design update

- One Ø30 mm Rod per quadrant
- Pad width: 30 mm @ both sides of the rod with 50 mm aperture
- Fixed Yoke and Shell for different apertures (34 mm & 50 mm): Only Pad and Spacer change
- Shell dimensions: Ø Outer: 650 mm. Thickness: 30 mm (Ø Inner: 590 mm)
- Iron components EMF taken into consideration (Spacer & Pad)

Maxwell 2D - 34mm aperture

- Intrabeam⁽¹⁾: 149.6 mm
- Nominal Current: 19340 A
- Peak Field: 14.74 T

⁽¹⁾: *a2* optimization

- Aperture Field: 13.99 T
- Middle Yoke height (Q1): 57.3 mm (0.5mm to aperture)

SurfaceForc [megN/m^2]	
Max: 7492.243	
Max: 7492.243 7492.24 6758.80 6025.37 5291.93 4558.49 3825.06 3091.62 2358.18 1624.75 891.316 157.875	
Min: 157.879	

Fx (Coil)	6,397	MN/m
Fy (Coil)	0,441	MN/m
Total F (Coil)	6,412	MN/m
Fx (Spacer)	-0,916	MN/m
Fy (Spacer)	0,304	MN/m
Total F (Spacer)	0,965	MN/m
Fx (Pad)	-1,051	MN/m
Fy (Pad)	-0,253	MN/m
Total F (Pad)	1,081	MN/m

Ansys 2D - 34mm aperture

- Both keys in contact @ room temperature (20°C). Cooling up to 1.9K
- Max. Horizontal Coil Displacement (X) due to EMF: 0.2 mm
- Max Stress @ Coil (Cooling + EMF):
 - Max X Stress @ Coil: 95.2 MPa (-101.3 MPa)
 - Max Y Stress @ Coil: 45.7 MPa (-90.0 MPa)
 - Max VM Stress @ Coil: 113.9 MPa
 - Max Shear Stress @ Coil: 47.8 MPa (located @ Pole Coil transition)

19th June 2024

Coil Displacement due to EMF

Maxwell 2D - 50mm aperture

- Intrabeam⁽¹⁾: 149.6 mm
- Nominal Current: 20728 A
- Peak Field: 14.32 T

⁽¹⁾: *a2* optimization

- Aperture Field: 12.70 T
- Middle Yoke height (Q1): 49.3 mm (0.5mm to aperture)

Fx (Coil)	5,830	MN/m
Fy (Coil)	0,830	MN/m
Total F (Coil)	5 <i>,</i> 889	MN/m
Fx (Spacer)	-0,327	MN/m
Fy (Spacer)	0,311	MN/m
Total F (Spacer)	0 <i>,</i> 452	MN/m
Fx (Pad)	-1,175	MN/m
Fy (Pad)	-0,403	MN/m
Total F (Pad)	1,242	MN/m

19th June 2024

Ansys 2D - 50mm aperture

- Both keys in contact @ room temperature (20°C). Cooling up to 1.9K
- Max. Horizontal Coil Displacement (X) due to EMF: 0.16 mm
- Max Stress @ Coil (Cooling + EMF):
 - Max X Stress @ Coil: 94.2 MPa (-101 MPa)
 - Max Y Stress @ Coil: 52.7 MPa (-99.4 MPa)
 - Max VM Stress @ Coil: 113.9 MPa

D: Static Structural (2 rods - 50mm) Dx3-Dx2 - nan s Expression: Dx3-Dx2 Unit: mm 04/06/2024 9:37 0,16174 Max 0,15036 0,13899 0,12761 0,11624 0,10486 0,093487 0,082112 0,070738 0.059363 Min

Coil Displacement due to EMF

Max Shear Stress @ Coil: 48.4 MPa (located @ Pole – Coil transition)

- ISAAC goals & constraints (reminder)
- 2D Design update
 - 34 mm aperture
 - 50 mm aperture
- 3D Design (34mm aperture)
 - Magnetic Maxwell
 - Mechanical Ansys
- Conclusions

3D Design – 34mm aperture

- Geometry and thermal/magnetic conditions as in 2D design
- No axial support
- Iron only in magnet straight section (Spacer & Pad)

Maxwell 3D

- Nominal current: 19340 A
- Aperture Field: 13.91 T
- Iron only in magnet straight section

Fx (Coil)	1,692	MN	Fx (Spacer)	-198,160	kN	Fx (Pad)	-166,390	kN
Fy (Coil)	0,381	MN	Fy (Spacer)	-45,569	kN	Fy (Pad)	-52,368	kN
Fz (Coil)	0,249	MN	Fz (Spacer)	-22,374	kN	Fz (Pad)	-18,979	kN
Total F (Coil)	1,752	MN	Total F (Spacer)	204,560	kN	Total F (Pad)	175,460	kN

Ansys 3D: Coil Displacement due to EMF

19th June 2024

7th Common Coil Joint Meeting

Ansys 3D: Coil stress

Eq. VM C: Structural-3D_34mm_GeomSW Equivalent (von-Mises) Stress - Coil-

	COIL			
	X stress	Y stress	Z stress	VM stress
Max	94,325 MPa	117,41 MPa	222,56 MPa	220,69 MPa
Min	-193,5 MPa	-78,57 MPa	-51,59 MPa	3,5606 MPa

Ansys 3D: Coil planar surfaces Shear stress

	COIL (Planar surfaces)		
	XY Sh. stress XZ Sh. stress		
Max	6,2757 MPa	50,385 MPa	
Min	-69 MPa	-35,1 MPa	

Max Shear Stress: Second cable Block contact with Coil Spacer

(Magnet Spacer side)

Ansys 3D: Coil 1st Block Head surfaces Shear stress

	COIL (1st Block surfaces)		
	XY Sh. stress XZ Sh. stress		
Max	42,979 MPa	43,085 MPa	
Min	-11,33 MPa	-28,08 MPa	

Max Shear Stress: First cable Block contact with Pole (Magnet Spacer side)

Ansys 3D: Coil 2nd Block Head surfaces Shear stress

	COIL (2nd Block surfaces)		
	XY Sh. stress XZ Sh. stress		
Max	8,0471 MPa	29,755 MPa	
Min	-32,167 MPa	-25,46 MPa	

Max Shear Stress: Second cable Block contact with Coil Spacer

(Magnet Spacer side)

Ansys 3D: Coil 3rd Block Head surfaces Shear stress

	COIL (3rd Block surfaces)		
	XY Sh. stress XZ Sh. stress		
Max	15,839 MPa	48,065 MPa	
Min	-31,07 MPa	-28,61 MPa	

Max Shear Stress: Third cable Block contact with Coil Spacer

(Magnet Spacer side)

- ISAAC goals & constraints (reminder)
- 2D Design update
 - 34 mm aperture
 - 50 mm aperture
- 3D Design (34mm aperture)
 - Magnetic Maxwell
 - Mechanical Ansys
- Conclusions

Conclusions (2D design)

- ISAAC 2D design updated for 34mm and 50mm aperture:
 - Shell outer diameter up to 650mm
 - EMF over iron Spacer & iron Pad
- Max. Horizontal Coil Displacement (X) due to EMF: 0.2 mm
- Concerns about "unavoidable" shear stress in coil contact with the pole (about 50 MPa for 34mm aperture)
- Max. VM Coil stress about 115 MPa for 34mm aperture (below 150 MPa)
- Influence of Iron Spacer small displacements on ISAAC performance

Conclusions (3D design)

- First 3D simulations with iron only in magnet straight section & no axial support
 - Max. horizontal coil displacement due to EMF: 0.22mm
 - Max. axial coil displacement due to EMF: 0.19mm
 - Max. VM Coil stress about 221 MPa
 - Max. Shear Coil stress about 69 MPa
- 3D design analysis ongoing:
 - Iron all magnet length (Spacer & Pad)
 - Iron Pad all magnet length & Spacer only in magnet straight section
 - Axial preload
 - Magnet assembly strategy (preload sequence)

