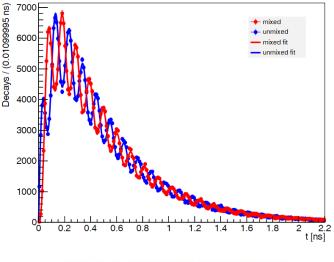
Oscillation in different samples

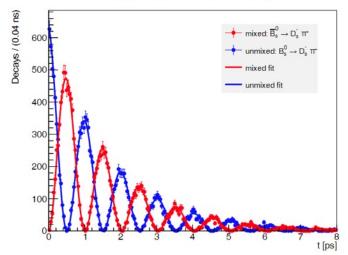
Herwig: can record both states initial and oscillated, and corresponding decay products.

e.g.
$$mix: \overline{B_S^0} \to B_S^0 \to D_S^- \pi^+$$

 $unmix: B_S^0 \to B_S^0 \to D_S^- \pi^+$
creation time: t1 t2 t3

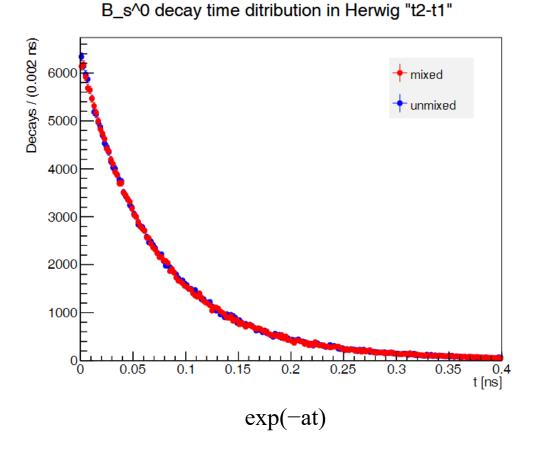

Whizard: can only record initial state, if there is oscillated can be proved by decay products. e.g. mix: $\overline{B_s^0} \rightarrow \overline{B_s^0} \rightarrow D_s^- \pi^+$ unmix: $B_s^0 \rightarrow \overline{B_s^0} \rightarrow D_s^- \pi^+$ e.g. mix: $\overline{B_s^0} \rightarrow D_s^- \pi^+$ unmix: $B_s^0 \rightarrow D_s^- \pi^+$ creation time: t1 t3

Sherpa: Not find yet...

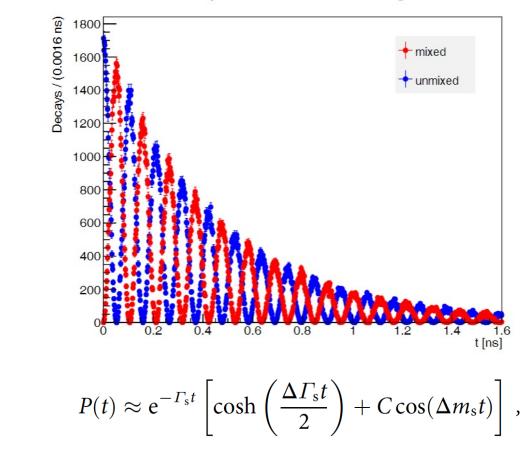

2024/6/20

Decay time: t3 - t1

Bs decay time ditribution in Herwig



Bs decay time ditribution in Whizard

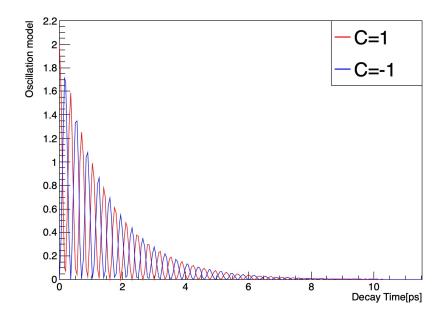


Mixed decays is which the initially produced meson mixed into its antiparticle before decaying

T2-t1 and t3-t2

Decay stippe is Produce as $t = \frac{Lm}{p}$,

L is the distance between the production vertex and the decay vertex of the particle, *m* its reconstructed invariant mass, *p* its reconstructed momentum.

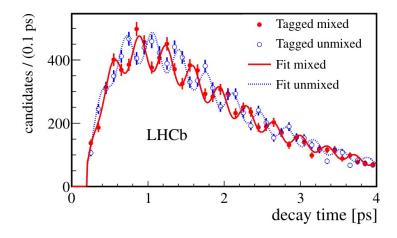

1. The theoretical distribution of the oscillation decay time t, ignoring any detector resolution:

$$P(t) \approx e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + C\cos(\Delta m_s t) \right],$$

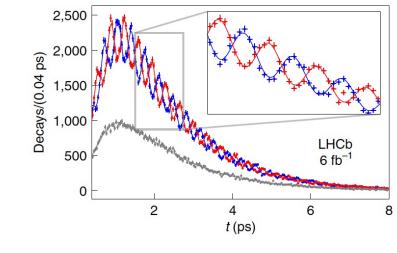
$$\Gamma_s = \frac{1}{\tau} = 0.66 \times 10^{12} s^{-1} is \ the \ B_s^0 \ decay \ width,$$

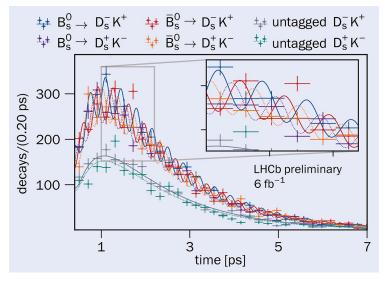
$$\Delta\Gamma_s = (0.085 \pm 0.004) \times 10^{12} s^{-1},$$

$$\Delta m_s = (17.7683 \pm 0.0051) p s^{-1},$$



$Doubles checkec Decay-time d] - B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} - \overline{B}_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} - Untagged$


Different decay channels cannot change Decay time distribution.


 $B_s^0 \rightarrow anything$ could find oscillation.

The time scale is still a question, read hepmc to check if it is truth level sample next.

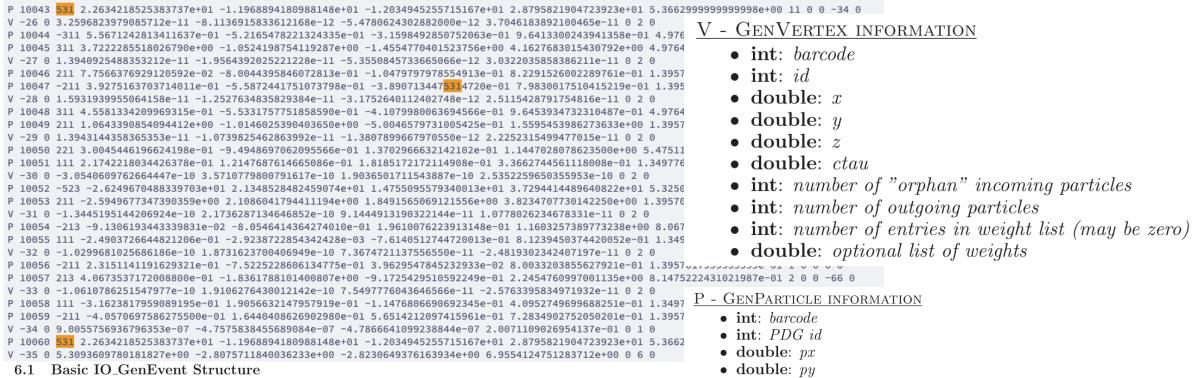


Figure 2. Decay time distribution for the sum of the five decay modes for candidates tagged as mixed (different flavour at decay and production; red, continuous line) or unmixed (same flavour at decay and production; blue, dotted line). The data and the fit projections are plotted in a signal window around the reconstructed B_s^0 mass of 5.32–5.55 GeV/ c^2 .

Read Herwig output-hepmc______

BLOCK KEYS

• **begin event block**: *HepMC::IO_GenEvent-START_EVENT_LISTING*

• end event block: *HepMC::IO_GenEvent-END_EVENT_LISTING*

LINE KEYS

- E: general GenEvent information
- N: named weights
- U: momentum and position units
- C: GenCrossSection information: This line will appear ONLY if GenCrossSection is defined.
- H: HeavyIon information: This line will contain zeros if there is no associated HeavyIon object.
- F: PdfInfo information: This line will contain zeros if there is no associated PdfInfo object
- V: GenVertex information
- **P**: GenParticle information

2024/6/20

- double: pz
- double: energy
- double: generated mass
- \bullet int: status code
- double: Polarization theta
- double: Polarization phi
- int: barcode for vertex that has this particle as an incoming particle
- int: number of entries in flow list (may be zero)
- int, int: optional code_index and code for each entry in the flow list

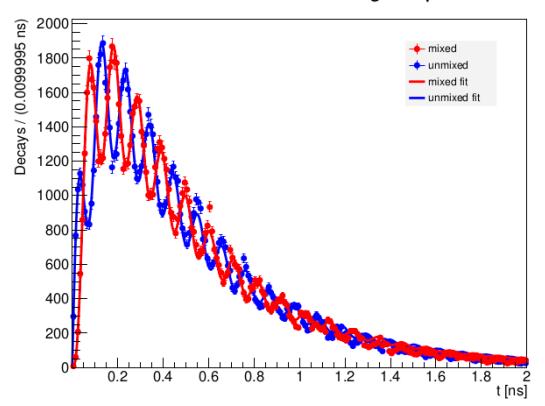
Read Herwig output-hepmc

<pre>if ((*am)->pdg_id() == - (*p)->pdg_id()) {</pre>	<pre>root [8] OutputTree->GetEntries("t1!=0 t2!=0 t3!=0") (long long) 0</pre>
<pre>GenVertex* prod_vertex = (*p)->production_vertex(); GenVertex* end_vertex = (*p)->end_vertex(); if(prod_vertex && end_vertex) {</pre>	<pre>root [10] OutputTree->Show(3) =====> EVENT:3</pre>
<pre>HepMC::FourVector prod_pos = prod_vertex->position(); HepMC::FourVector end_pos = end_vertex->position(); //double flight_time = (end_pos.t() - prod_pos.t()) / (*p)->momentum().t();</pre>	$\begin{array}{ccc} t1 & = 0 \\ t2 & = 0 \end{array}$
<pre>double flight_time = (end_pos.t() - prod_pos.t()); t1 = flight_time; cout << "Particle ID: " << (*p)->pdg_id() << ", Flight Time-t1: " << t1 << endl;</pre>	$t_3 = 0$
<pre>double dx = end_pos.x() - prod_pos.x();</pre>	Bs_M = 5.3663 Bs_E = 28.7958
double dy = end_pos.y() - prod_pos.y(); double dz = end_pos.z() - prod_pos.z(); double distance = sqrt(dx*dx + dy*dy + dz*dz);	$B_{S} \Theta = \Theta$
<pre>double speed = (*p)->momentum().t() / (*p)->momentum().m(); double flight_time1 = distance / speed; t2 = distance;</pre>	antiB_s0 = 0
t3 = flight_t ⁱ me1; cout << <mark>"Particle ID: "</mark> << (*p)->pdg_id() << ", Flight Time-t3: " << t3 << endl;	The vertex information is not stored when reading a hepmc file

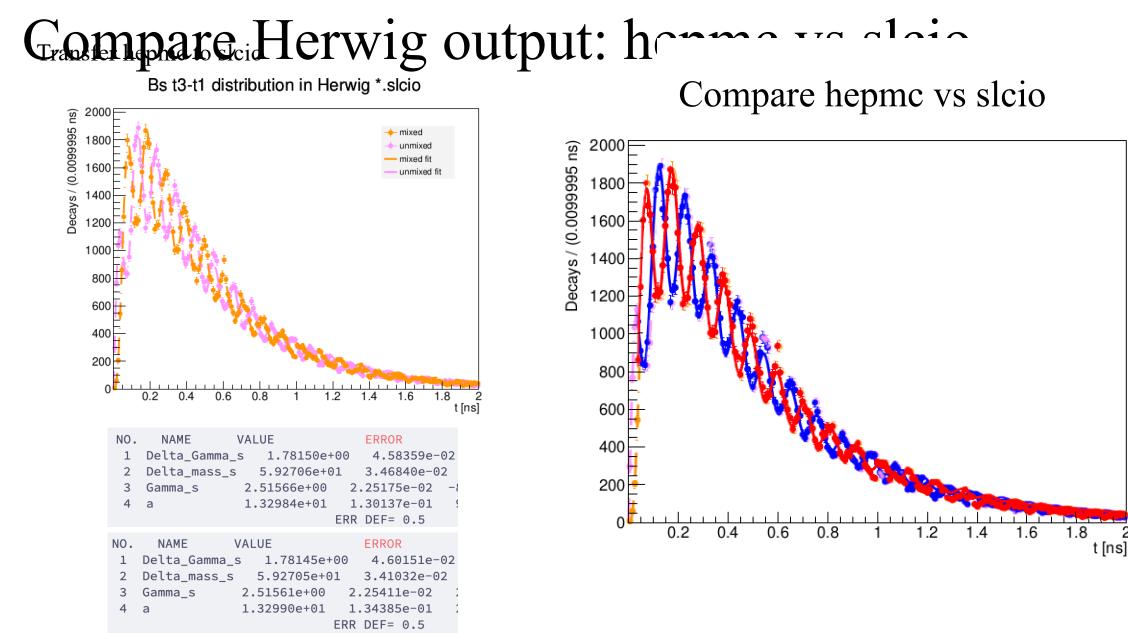
parent ID: 23 parent ID: 23	<pre>if((*p)->pdg_id() == 531 (*p)->pdg_id() == -531) Bs_M = mass; Bs_E = energy; GenEvent::particle_const_iterator am = (*p)->parent_event()->particles_begin();</pre>
parent ID: 23 parent ID: 23	<pre>cout<< "parent ID: "<< (*am)->pdg id() <<endl;< pre=""></endl;<></pre>
parent ID: 23 parent ID: 23	
parent ID: 23	

Particle ID: 531, Flight Time-t1: 0.55037 Particle ID: -531, Flight Time-t1: 0.167168 Particle ID: -531, Flight Time-t1: 0.443375 Particle ID: -531, Flight Time-t1: 0.136498 Particle ID: -531, Flight Time-t1: 4.69707 Particle ID: -531, Flight Time-t1: 0.568665 Particle ID: 531, Flight Time-t1: 3.06571 Particle ID: -531, Flight Time-t1: 0.403697 Particle ID: -531, Flight Time-t1: 2.9745 Particle ID: 531, Flight Time-t1: 0.459158 Particle ID: -531, Flight Time-t1: 3.04256 Particle ID: -531, Flight Time-t1: 0.317022 Particle ID: 531, Flight Time-t1: 5.41378 Particle ID: -531, Flight Time-t1: 0.0542714 Particle ID: -531, Flight Time-t1: 3.08513 Particle ID: -531, Flight Time-t1: 1.63342 Particle ID: -531, Flight Time-t1: 2.82208 Particle ID: 531, Flight Time-t1: 0.145736 Particle ID: -531, Flight Time-t1: 3.1772 Particle ID: 531, Flight Time-t1: 0.652983 Particle ID: -531, Flight Time-t1: 1.0155 Number of Events10000

https://answers.launchpad.net/madanalysis5/+question/243656

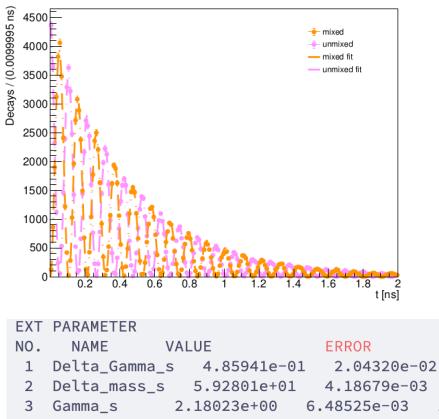

parent ID: 23

Read Harris, piltant hann, produce of time: 2.13526e-07, Parent-p end time: 0.0374039, p prod time:

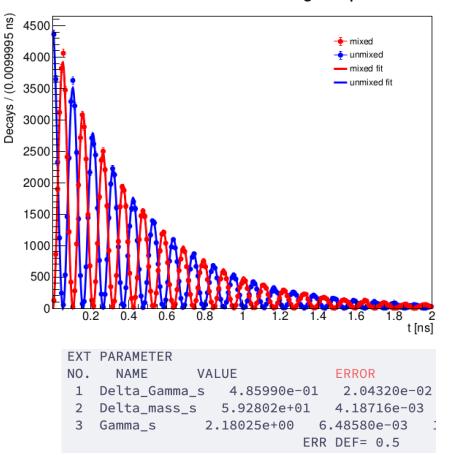

0.0374039, Osc:0

60: PID:531Daughter PID: -431, p prod time:0.0374039, p end time:1.29619, dau prod time:1.29619, dau end time:1.54169 60: PID:531Daughter PID: 113, p prod time:0.0374039, p end time:1.29619, dau prod time:1.29619, dau end time:1.29619 60: PID:531Daughter PID: 113, p prod time:0.0374039, p end time:1.29619, dau prod time:1.29619, dau end time:1.29619

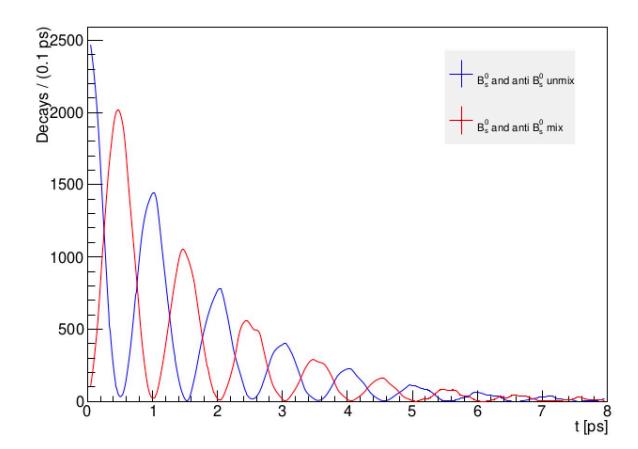
Bs t3-t1 distribution in Herwig *.hepmc



NO.	NAME	VALUE	ERROR
1	Delta_Gamma_	s 1.78145e+00	4.60151e-02
2	Delta_mass_s	5.92705e+01	3.41032e-02
3	Gamma_s	2.51561e+00	2.25411e-02
4	а	1.32990e+01	1.34385e-01 2
		ER	R DEF= 0.5


Compare Herwig output: home or alain

Bs t3-t2 distribution in Herwig *.slcio


ERR DEF= 0.5

Bs t3-t2 distribution in Herwig *.hepmc

Finding in whizard samples

B ⁰ _s DECAY MODES	Fraction (Γ_i/Γ)	Scale factor/ Confidence level	
D_s^- anything	(93 ±25)	1%	22
$\ell \nu_{\ell} X$	(9.6 ± 0.8)	1%	-
$e^+\nu X^-$	(9.1 ± 0.8)	1%	-
$\mu^+ \nu X^-$	(10.2 ± 1.0)	%	-
$D_s^- \ell^+ \nu_\ell$ anything	$[a]$ (8.1 ± 1.3)	%	_
$D_s^{*-}\ell^+\nu_\ell$ anything	(5.4 ± 1.1)	%	-
$D_{s1}(2536)^- \mu^+ \nu_{\mu}, \ D_{s1}^- \to D^{*-} K_S^0$	($2.6~\pm~0.7$)	1×10^{-3}	-
$\begin{array}{c} D_{s1}(2536)^{-} X \mu^{+} \nu, D_{s1}^{-} \rightarrow \\ \overline{D}^{0} K^{+} \end{array}$	(4.4 ± 1.3)	10×10^{-3}	-
$\begin{array}{ccc} D_{s2}(2573)^- X \mu^+ \nu, & D_{s2}^- \rightarrow \\ \overline{D}{}^0 \mathcal{K}^+ \end{array}$	(2.7 ± 1.0)	127	-
$D_s^-\pi^+$	(3.00 ± 0.23)		2320
$D_s^- \rho^+$	($6.9~\pm~1.4$)	1×10^{-3}	2249
$D_{s}^{-}\pi^{+}\pi^{+}\pi^{-}$	(6.1 ± 1.0)	1×10^{-3}	2301
$D_{s1}(2536)^{-}\pi^{+}, D_{s1}^{-} \rightarrow D_{s}^{-}\pi^{+}\pi^{-}$	(2.5 ± 0.8)	10×10^{-5}	-
$D_s^{\mp} K^{\pm}$	(2.27 ± 0.19)	$\times 10^{-4}$	2293
$D_{s}^{-}K^{+}\pi^{+}\pi^{-}$	(3.2 ± 0.6)	10×10^{-4}	2249
$D_s^+ D_s^-$	(4.4 ± 0.5)		1824
HTTP://PDG.LBL.GOV	Page 2	Created: 6/5/201	8 18:58

Finding in whizard samples

EXT PARAMETER STEP FIRST NO. NAME VALUE ERROR SIZE DERIVATIVE 1 Delta Gamma s 1.52364e-01 1.48219e-02 3.97335e-03 -5.64588e-03 2 Delta mass s 6.19092e+00 3.35987e-03 3.22556e-05 1.52024e+00 2.06169e-04 -1.86212e-02 3 Gamma s 6.13242e-01 5.02915e-03 ERR DEF= 0.5 ERR DEF=0.5 EXTERNAL ERROR MATRIX. NDIM= 25 NPAR= 3 2.198e-04 1.263e-05 4.310e-05 1.263e-05 1.129e-05 2.476e-06 4.310e-05 2.476e-06 2.529e-05 PARAMETER CORRELATION COEFFICIENTS NO. GLOBAL 2 3 1 1 0.60270 1.000 0.254 0.578 0.254 1.000 2 0.25362 0.147 3 0.57800 0.578 0.147 1.000

> y_s: 0.124228620557 x_s: 10.0953937083

Bs decay time ditribution in Whizard

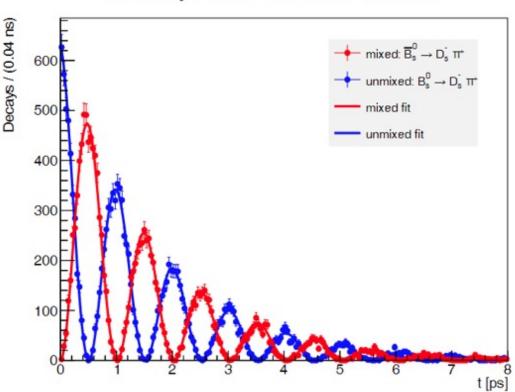


Table 3. Information down the information maple and b the measurement. The number of create is the booklerging in reported sepansity for the maper down (more sepansity for the maper down (

file /tmp/tmp.jL7AyRlWvT/DBASE/Gen/DecFiles/v30r106/options/13264021.py generated: Thu, 16 May 2024 16:58:05

Event Type: 13264021

#

ASCII decay Descriptor: {[[B_s0]nos -> (D_s- => K+ K- pi-) pi+]cc, [[B_s0]os -> (D_s+ => K- K+ pi+) pi-]cc}
#

from Configurables import Generation
Generation().EventType = 13264021
Generation().SampleGenerationTool = "SignalRepeatedHadronization"
from Configurables import SignalRepeatedHadronization
Generation().addTool(SignalRepeatedHadronization)
Generation().SignalRepeatedHadronization.ProductionTool = "Pythia8Production"
from Configurables import ToolSvc
from Configurables import EvtGenDecay
ToolSvc().addTool(EvtGenDecay)
ToolSvc().EvtGenDecay.UserDecayFile = "\$DECFILESR00T/dkfiles/Bs_Dspi,KKpi=DecProdCut.dec"
Generation().SignalRepeatedHadronization.CutTool = "DaughtersInLHCb"
Generation().SignalRepeatedHadronization.SignalPIDList = [531, -531]

Ad-hoc particle gun code

from Configurables import ParticleGun
pgun = ParticleGun("ParticleGun")
pgun.SignalPdgCode = 531
pgun.DecayTool = "EvtGenDecay"
pgun.GenCutTool = "DaughtersInLHCb"

from Configurables import FlatNParticles
pgun.NumberOfParticlesTool = "FlatNParticles"
pgun.addTool(FlatNParticles , name = "FlatNParticles")

from Configurables import MomentumSpectrum
pgun.ParticleGunTool = "MomentumSpectrum"
pgun.addTool(MomentumSpectrum , name = "MomentumSpectrum")
pgun.MomentumSpectrum.PdgCodes = [531,-531]
pgun.MomentumSpectrum.InputFile = "\$PGUNSDATAR0OT/data/Ebeam4000GeV/MomentumSpectrum_531.root"
pgun.MomentumSpectrum.BinningVariables = "pteta"
pgun.MomentumSpectrum.HistogramPath = "h_pteta"

from Configurables import BeamSpotSmearVertex
pgun.addTool(BeamSpotSmearVertex, name="BeamSpotSmearVertex")
pgun.VertexSmearingTool = "BeamSpotSmearVertex"
pgun.EventType = 13264021

file /tmp/tmp.jL7AyRlWvT/DBASE/Gen/DecFiles/v30r106/options/13164042.py generated: Thu, 16 May 2024 16:58:05

Event Type: 13164042

ASCII decay Descriptor: {[[B_s0]nos -> (D_s- => pi+ pi- pi-) pi+]cc, [[B_s0]os -> (D_s+ => pi- pi+ pi+) pi-]cc}

from Configurables import Generation
Generation().EventType = 13164042
Generation().SampleGenerationTool = "SignalRepeatedHadronization"
from Configurables import SignalRepeatedHadronization
Generation().addTool(SignalRepeatedHadronization)
Generation().SignalRepeatedHadronization.ProductionTool = "Pythia8Production"
from Configurables import ToolSvc
from Configurables import EvtGenDecay
ToolSvc().addTool(EvtGenDecay)
ToolSvc().EvtGenDecay.UserDecayFile = "\$DECFILESR00T/dkfiles/Bs_Dspi,pipipi=DDalitz,DecProdCut.dec"
Generation().SignalRepeatedHadronization.SignalPIDList = [531,-531]

Ad-hoc particle gun code

from Configurables import ParticleGun
pgun = ParticleGun("ParticleGun")
pgun.SignalPdgCode = 531
pgun.DecayTool = "EvtGenDecay"
pgun.GenCutTool = "DaughtersInLHCb"

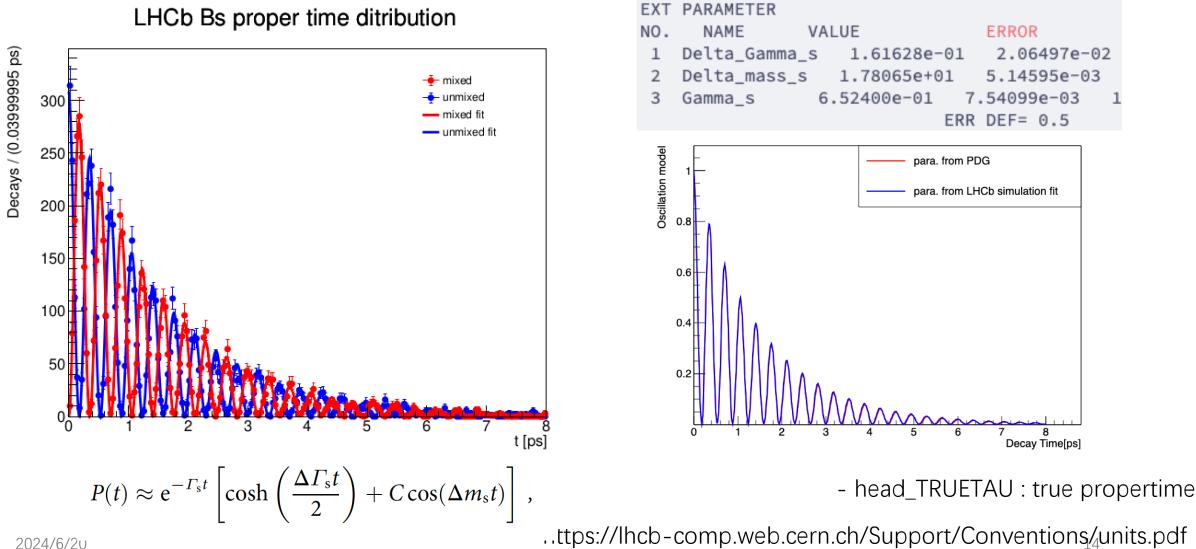
from Configurables import FlatNParticles
pgun.NumberOfParticlesTool = "FlatNParticles"
pgun.addTool(FlatNParticles , name = "FlatNParticles")

from Configurables import MomentumSpectrum
pgun.ParticleGunTool = "MomentumSpectrum"
pgun.addTool(MomentumSpectrum , name = "MomentumSpectrum")
pgun.MomentumSpectrum.PdgCodes = [531,-531]
pgun.MomentumSpectrum.InputFile = "\$PGUNSDATAR00T/data/Ebeam4000GeV/MomentumSpectrum_531.root"
pgun.MomentumSpectrum.BinningVariables = "pteta"
pgun.MomentumSpectrum.HistogramPath = "h_pteta"

from Configurables import BeamSpotSmearVertex
pgun.addTool(BeamSpotSmearVertex, name="BeamSpotSmearVertex")
pgun.VertexSmearingTool = "BeamSpotSmearVertex"
pgun.EventType = 13164042

Table 3: Information about the simulated the magnet down (Down) and up (Up).	l samples used i	n the measu	rement. The r	umber of events in the booki	keeping is report	ed separat	ely for

Decay	Escut type	Year	Stripping	Sn.	Rem.	simcond	6565	Up	Down
$B_{-}^{0} \rightarrow D_{-}^{+}\pi^{+}, D_{-}^{+} \rightarrow K^{-}K^{+}\pi^{-}$	13 25 400 1	2005	e24y1	\$1e09c	Reco 35a	aim-20161124-vc-m(c,4)100	4441-20170721-3	71788	70995
		2405	e28y1	8 in 19 c	Reco16	sis-20170721-2-vc-m(u,d)100	d44b-20170721-3	157386	158174
				8 in 19h	Reco16	sis-20170721-2-vc-m(u,d)100	dddb-20170721-3	2622617	2636915
		2017	#29x2	Sim093	Recol7	sis-20190450-1-vc-s(u.d)100	6451-20170721-3	2004367	2514568
		2018	a24	51a/393	Recold.	sta-20190430-vr-m(s.d)100	6459-20170721-3	3000430	3096560
$B_{+}^{*} \rightarrow D_{-}^{+}\pi^{+}, D_{-}^{-} \rightarrow \pi^{+}\pi^{+}\pi^{-}$	11164042	2005	e24r1	\$1a09c	Reco 35a	aim-20161124-vc-m(s,4)100	4441-20170721-3	191.95	13057
		2405	e28y1	8 in 19 c	Reco16	sis-20170721-2-vc-m(u,d)100	d44b-20170721-3	44248	455.91
				8 in 19h	Reco16	sis-20170721-2-vc-m(u,d)100	dddb-20170721-3	209187	218200
		2017	#29x2	Sim093	Recol7	sis-20190450-1-vc-s(u.d)100	6459-20170721-3	215008	2278-50
		2008	634	\$18095	Reco18	aim-20190430-vc-m(e,4)100	4441-20170721-3	2007.22	201220
$B^{0} \rightarrow D^{-}\pi^{+}, D^{-} \rightarrow K^{+}\pi^{-}\pi^{-}$	11254001	2005	e24r1	\$1x09c	Reco 35a	aim-20161124-wc-m(s, 4)100	4441-20170721-3	83933	8195
		2405	e28v1	8 in 19 c	Reco16	sis-20170721-2-vc-m(u,d)100	d44b-20170721-3	268712	236181
				8 in 19h	Reco16	sis-20170721-2-vc-m(u,d)100	dddb-20170721-3	1429458	144910
		2017	#29x2	Star29 g	Recol7	sis-20190450-1-vc-s(u.d)100	6459-20170721-3	225884	226336
				\$18095	Reco17	sim-20190430-1-vc-m[u,4]100	4441-20170721-3	1282271	12797-20
		2008	#34	\$1e09b	Reco18	aim-20190430-vc-m(s, 4)100	4441-20170721-3	1508035	1536536
$\mathbb{R} \rightarrow \mathcal{X}(\pi^+, \mathcal{X}) \rightarrow \mathbb{R}K^+\pi^-$	15554010	2005	e24r1	\$1e09c	Reco 35a	sim-20161124-vc-m(s, d) 100	4445-20170721-3	44700	52525
		2005	e28r1	\$1±09c	Reco16	sim-20170721-2-vc-m[u,d]100	dddb-20170721-3	77877	76138
		2417	12972	Sint9r	Recol7	sis-20190450-1-vc-s(u,d)100	dddb-20170721-3	1544.22	152064
		2018	#24	51a09h	Recold.	sta-20190430-vc-m(s.d)100	6459-20170721-3	156710	100046
$9_s^0 \rightarrow D_s^{*-}\pi^+, D_s^{*-} \rightarrow D_s^-\gamma/\pi^0, D_s^- \rightarrow K^-K^+\pi^-$	13264221	2015	#2441	Star09c	Recolfa.	sim-20161124-wr-m(z,d)100	6451-20170721-3	28214	28177
		2005	e28r1	\$1±09¢	Reco16	sim-20170721-2-vc-m[u,d]100	4445-20170721-3	75254	75915
		2007	s2972	Sim00g	Reco17	sim-20190430-1-vc-m(u,d)100	dddb-20170721-3	79285	7710
		2408	#34	Sint9h	Reco18	sim-20190430-vc-m(s,d)130	dddb-20170721-3	89744	80005
$9_s^0 \rightarrow D_s^{\mp}K^{\pm}, D_s^{-} \rightarrow K^-K^+\pi^-$	13264031	2015	#24c1	Sim09c	Recolfs.	sim-20151124-wr-m(z,d)100	6451-20170721-3	28363	28280
		2016	#2811	S1av09 c	Recol-6	sis-20170721-2-vc-s(u,d)100	dddb-20170721-3	755.00	78507
		2005	e28r1	Sim09h	Reco16	sim-20170721-2-vc-m[u,d]100	dddb-20170721-3	1643000	1710715
		2417	±2972	Sintth	Recol7	sis-20190430-1-vc-s(u,d)100	dddb-20170721-3	2051221	2063814
		2418	#24	5 in 191	Reco18	min-20190430-vc-m(s.d)130	dddb-20170721-3	2068258	2003085

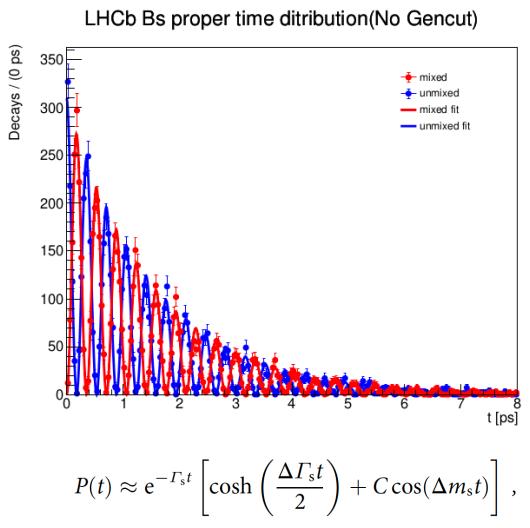

EventType: 13264021	# EventType: 13164042
<pre># # Descriptor: {[[B_s0]nos -> (D_s- => K+ K- pi-) pi+]cc, [[B_s0]os -> (D_s+ => K- K+ pi+) pi-]cc} #</pre>	<pre># # Descriptor: {[[B_s0]nos -> (D_s- => pi+ pi- pi-) pi+]cc, [[B_s0]os -> (D_s+ => pi- pi+ pi+) pi-]cc} #</pre>
# NickName: Bs_Dspi,KKpi=DecProdCut #	# # NickName: Bs_Dspi,pipipi=DDalitz,DecProdCut
<pre># Cuts: DaughtersInLHCb #</pre>	# # Cuts: DaughtersInLHCb
<pre># # Documentation: # B_s0 decay to D_s- (KKpi) pi+ with Dalitz decay model for D_s- decay. DaughtersInLHCb # EndDocumentation # # PhysicsWG: B20C # Tested: Yes # Responsible: Paul Szczypka # Email: paul.szczypka@{nospam}cern.ch # Date: 20110927 # Alias MyD_s- D_s- Alias MyD_s+ D_s+ ChargeConj MyD_s+ MyD_s- # Decay B_s0sig 1.000 MyD_s- pi+ PHSP; Enddecay CDecay anti-B_s0sig</pre>	<pre># Documentation: # B_s0 decay to D_s- (pipipi) pi+ with Dalitz decay model for D_s- decay. # DaughtersInLHCb # EndDocumentation # # PhysicsWG: B20C # Tested: Yes # Responsible: Anton Poluektov # Email: A.O.Poluektov@warwick.ac.uk # Date: 20120503 Alias MyD_s- D_s- Alias MyD_s+ D_s+ ChargeConj MyD_s+ MyD_s- # Decay B_s0sig 1.000 MyD_s- pi+ PHSP; Enddecay</pre>
# Decay MyD_s- 1.000 K- K+ pi- D_DALITZ; Enddecay CDecay MyD_s+ # End	CDecay anti-B_s0sig # Decay MyD_s- 1.000 pi+ pi- pi- D_DALITZ; Enddecay CDecay MyD_s+
	# End

LHCb result study

Simulated samples used

Decay

$$B_s^0 \rightarrow D_s^- \pi^+, D_s^- \rightarrow K^- K^+ \pi^-$$


2024/6/20

LHCb result study

No Gencut sample

Decay

 $B_s^0 \rightarrow D_s^- \pi^+, D_s^- \rightarrow K^- K^+ \pi^-$

EXT	PARAMETER		
NO.	NAME VA	ALUE	ERROR
1	Delta_Gamma_s	1.61628e-01	2.06497e-02
2	Delta_mass_s	1.78065e+01	5.14595e-03
3	Gamma_s @	6.52400e-01 7	.54099e-03 1
		ERR	DEF= 0.5
EXT	PARAMETER		
NO.	NAME V	ALUE	ERROR
1	Delta_Gamma_s	1.28423e-01	2.29790e-02
2	Delta_mass_s	1.78087e+01	4.94629e-03
3	Gamma_s	6.49562e-01 7	7.38862e-03
		ERF	R DEF= 0.5

- head_TRUETAU : true propertime

..ttps://lhcb-comp.web.cern.ch/Support/Conventions/junits.pdf

2024/6/20

Summary and next

- 1. Compare with the result of LHCb and PDG, Herwig samples have different time scale and Whizard samples have different frequency.
- 2. It seems that the question is from Generators configurations, and maybe there is still something wrong in our code and calculation.
- 3. Clear oscillation shapes from generators now, so maybe we could start tagging from here.