B_s^0 mixing in Herwig truth level samples of CEPC

2024/6/11

Ji Peng

Xiaolin Wang

What Physics process we want to study

Neutral B meson mixing

Figure 75.1: Dominant box diagrams for the $B_q^0 \to \overline{B_q}^0$ transitions (q = d or s). Similar diagrams exist where one or both t quarks are replaced with c or u quarks.

Neutral mesons with strange, charm or beauty quantum numbers can mix with their antiparticles, as these quantum numbers are not conserved by the weak interaction. $B_s^0 / \overline{B_s^0}$ is one such example.

Herwig truth level samples

- The Herwig samples we analyzed are from: /cefs/higgs/yudongw/Generator2/Samples/Herwig/zpole_bb/slcio/
- There are 1000 files named as "zpole_bb_\${job}.slcio", where "\${job}" represents the file number, e.g. zpole_bb_00001.slcio.
- > Each file contains 10000 events. One can get that by `lcio_event_counter xxx.slcio`.
- > Samples are said to be at the Truth Level.

B_s^0 mixing pattern in Herwig

- > All B_s^0 / B_s^0 mixing or decay in patterns like: `s1(t1) -> s2(t2) -> f(t3)`, where s1 and s2 represent the states(as shown right, event#1418 s1: $\overline{B_s^0}$ s2: B_s^0) at time t1 and t2 respectively and f is daughter particles decayed from s2(e.g. $B_s^0 \rightarrow D_s^- \pi^+$, f: $D_s^- \pi^+$).
- Notice that s1 and s2 can be the same state in the mixing pattern in Herwig(e.g. event#1422), which means s1 and s2 can have the same PDG_ID. However, we checked that they are not in the same memory address and with different serial number.

question here:

The mixing or decay pattern is strange, just 2 steps: s1->s2->f ?

event#1418 anti_Bs0--->Bs0----> event#1422 Bs0--->Bs0---> event#1430 Bs0--->anti_Bs0---> event#1452 anti_Bs0--->Bs0---> event#1457 anti_Bs0--->Bs0---> event#1463 anti_Bs0--->anti_Bs0---> event#1526 Bs0--->Bs0--->

B_s^0 mixing pattern in Herwig

- > t1, t2 and t3 are the production time of s1, s2 and f in the rest frame of $B_s^0 / \overline{B_s^0}$ respectively. We get them as following:
- ➢ First the function MCParticle::getTime() returns a time in the Lab frame. So one should do a boost transformation to the rest frame of $B_s^0 / \overline{B_s^0}$ in order to have a right decay time distribution. We do that according to formula: $t_{rest} = \frac{mass}{E_{lab}} * t_{lab}$, with functions MCParticle::getMass() and MCParticle::getEnergy().
- > Check the description and unit for functions we used.

virtual float	getTime () const =0 The creation time of the particle in [ns] wrt.
virtual doubl	e getMass () const =0 Returns the mass of the particle in [GeV] - only float used in files.

virtual double **getEnergy** () const =0 Returns the energy of the particle (at the vertex) in [GeV] computed from the particle's momentum and mass - only float used in files.

The production time t1 of B_s^0

- The production time of B_s^0 in the truth level is a distribution with mean value \geq at about 10^{-21} s, but some production time is negative?!
- We accepted that as the time returned in the samples is with a resolution. But \geq resolution appears in truth level samples?

Bs production time ditribution in Herwig

The decay time $t^3 - t^1$ distribution of B_s^0

- We call `s1==s2` unmixed, and `s1!=s2` mixed.
- We consider the decay time is `t3-t1`.
- All decay modes are counted.
- The decay time distribution we obtained without fitting is as shown in the top right.
- Comparing with LHCb result from data[<u>Nat. Phys. 18, 1–5</u> (2022)] in the bottom right, there are two noticeable problems:
 - 1. Incorrect time scale(About two orders of magnitude larger).
 - 2. Not like a 'truth level' decay time distribution.

`t2-t1` and `t3-t2` distributions

- We then checked the distributions of `t2-t1` and `t3-t2` as shown in the figure on the right.
- These two distributions make us confused:
 - 1. What do they mean in physics?
 - 2. Why times of `s1->s2`(t2-t1) is like an
 exponential distribution?
 - 3. Why times of `s2->f`(t3-t2) is like the standard oscillatory distribution?(see next slides)
 - 4. Is the state `s2` the decay state or intermediate
 state? If s2 is the decay state of Bs, but why
 `t3-t2` is not 0?

0.2

0.25

0.3

0.35 0.4 t [ns]

0.15

0.05

We can fit `t3-t2` distribution with the standard oscillatory distribution formula:

$$P(t) \sim e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + C \cdot \cos(\Delta m_s t) \right]$$

which from LHCb result[<u>Nat. Phys. 18, 1–5 (2022)</u>], $B_s^0 \rightarrow D_s^- \pi^+$ decay time distribution in the absence of detector effects.

> The parameters fitted are not same as the LHCb result value.

EXT PARAMETER	1	STEP	FIRST		
NO. NAME VALUE	ERROR	SIZE	DERIVATIVE		
1 Delta_Gamma_s 1.16342e+00	1.13884e-02	4.88288e	-04 4.93584e-01		
2 Delta_mass_s 5.93671e+01	3.69600e-03 1	.95183e-0	05 -1.58417e+00		
3 Gamma_s 2.20343e+00 5.	29071e-03 1.7	9273e-04	4.09741e-01		
ERR DEF= 0.5					
EXTERNAL ERROR MATRIX. NDIM= 2	25 NPAR= 3	ERR DE	=0.5		
1.297e-04 -1.243e-05 4.081e-05					
-1.243e-05 1.366e-05 -3.912e-06					
4.081e-05 -3.912e-06 2.799e-05					
PARAMETER CORRELATION COEFFICIENTS					
NO. GLOBAL 1 2	3				
1 0.69671 1.000 -0.295	0.677				
2 0.29534 -0.295 1.000 -	0.200				
3 0.67734 0.677 -0.200	1.000				
v = Delta Gamma s/(2	*Gamma s)	=	0.264002468798		
,		_	0.204002400750		
<pre>x = Delta_mass_s/Gam</pre>	ma_s	=	26.9430322981		

B_s^0 decay time ditribution in Herwig "t3-t2"

- \geq Let X=t2-t1, Y=t3-t2 and Z=t3-t1=X+Y.
- We assume that X and Y are independent and X follows an exponential distribution, and Y follows the standard oscillatory distribution.
- So we can get the distribution of Z from Monte Carlo, which meets the decay time \geq distribution of B_s^0 in Herwig.

Fit the decay time distribution of B_s^0

> The test of toy Monte Carlo shows that the convolution of an exponential distribution and the standard oscillatory distribution can be used to fit the decay time distribution of B_s^0 in Herwig.

$$P(t) \sim e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2}\right) + C \cdot \cos(\Delta m_s t) \right]$$

 $f(t) \propto \exp(-at) \otimes P(t)$

Bs decay time ditribution in Herwig

Even though we can fit the distribution well, we don't understand it:

- 1. The mixing or decay pattern is strange, just 2 steps: s1->s2->f ?
- 2. If s2 is the decay state of Bs, but why `t3-t2` is not 0?
- 3. The creation time have chance to be negative, resolution appears in truth level samples?
- 4. Why t2->t1 distribution is like an exponential decay rather than oscillation?
- 5. Why the time scale is two orders of magnitude larger than the experimental result?

Thanks!