NA62 and precision kaon experiments

Evgueni Goudzovski

(University of Birmingham)

email: eg@hep.ph.bham.ac.uk

Outline:

K→πνν decays: theory and experiment.
 Approved K→πνν projects: NA62@CERN and E14@J-PARC.
 NA62: the wider physics programme and UK involvement.
 Summary.

PPAP community meeting • University of Birmingham 11 July 2011

 $K \rightarrow \pi v \bar{v}$: introduction

Theoretically clean, sensitive to new physics, almost unexplored

- Hadronic matrix element can be related to measured quantities ($K \rightarrow \pi e \nu$ form factors).
- Exceptional SM precision not matched by any other loop-induced meson decay.
- Measurement of $|V_{td}|$ complementary to those from B–B mixing and $B^0 \rightarrow \rho \gamma$.
- δ BR/BR=10% would lead to δ |V_{td}|/|V_{td}|=7%.

K⁺→ $\pi^+\nu\bar{\nu}$: BNL E787/E949

(K₁ $\rightarrow \pi^0 \nu \overline{\nu}$ never observed)

Technique: K⁺ decay at rest.

Data taking: E787(1995–98), E949(2002). Incoming K⁺ (710 MeV/c) stopped in target (1.6MHz). PID: range (entire $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain). Hermetic photon veto system.

Observed candidates: 7 Expected background: 2.6 Final result: $BR=(1.73^{+1.15}_{-1.05})\times10^{-10}$

PRL 101 (2008) 191802, PRD 79 (2009) 092004

Drawbacks of the method:

- Low acceptance (~1%);
- significant background (~30%) due to π scattering in the target.

CERN NA62 vs BNL E949

NA62@CERN aims to collect O(100) $K^+ \rightarrow \pi^+ v \overline{v}$ decays with ~10% background in 2 years of data taking using novel decay-in-flight technique.

<u>Decay signature</u>: high momentum K⁺ (75GeV/c) → low momentum π^+ (15-35 GeV/c). <u>Advantages</u>: high K⁺ production rate (~p_K²); high acceptance (~10%);

efficient photon veto (>40 GeV missing energy) + good π^+/μ^+ separation by RICH.

However: unseparated beam (kaon fraction: 6%).

NA62: sensitivity

The wider NA62 programme

• Lepton Flavour Universality test [UK contribution] $R_{K} = BR(K^{+} \rightarrow e^{+}\nu)/BR(K^{+} \rightarrow \mu^{+}\nu).$ Decay-in-flight technique established at CERN. Expected NA62 precision: $\delta R_{K}/R_{K} < 0.2\%.$ Competition: TREK@J-PARC (stopped K⁺). • Searches for lepton flavour/number violation $K^{+} \rightarrow \pi^{+}\mu^{+}e^{-}, K^{+} \rightarrow \pi^{+}\mu^{-}e^{+}, K^{+} \rightarrow \pi^{-}\mu^{+}e^{+},$ $K^{+} \rightarrow \pi^{-}\mu^{+}\mu^{+}, K^{+} \rightarrow \pi^{-}e^{+}e^{+}.$

Current upper limits: $\sim 10^{-10} \dots 10^{-11}$. Expected NA62 limits: $\sim 10^{-12}$.

• Searches for heavy sterile neutrinos $(m_v < m_K)$: $K^+ \rightarrow \mu^+ \nu_H$; missing mass or $\nu_H \rightarrow \nu \gamma$ decay. Possible interpretation of LSND/MiniBooNE results: existence of neutrino with m~60MeV/c². 5.N.Gninenko, PRD83 (2011) 015015

Neutrino mass m_{vb}, MeV

Lepton Flavour Physics (the UK contribution to NA62)

Lepton Flavour Universality (LFU): not a fundamental law (violated in v sector). New physics models (2HDM, SUSY, SM4): significant LFU violation.

Observable sensitive to LFU violation:

$$\begin{split} \mathrm{R}_{K} &= \begin{array}{c} \frac{\Gamma(K^{\pm} \rightarrow e^{\pm} \nu)}{\Gamma(K^{\pm} \rightarrow \mu^{\pm} \nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \cdot \left(1 + \delta \mathbf{R}_{K}^{\mathrm{rad.corr.}}\right) \\ & & & & \\ & &$$

- <u>SM prediction</u>: excellent <u>sub-permille</u> accuracy: not obstructed by hadronic uncertainties.
- Measurements of R_{K} (and R_{π}) have long been considered as tests of LFU.
- NP contributions accessible experimentally due to the <u>suppression of the SM value</u>.

R_K: new physics

NA62: UK involvement

NA62UK collaboration: Birmingham, Bristol, Glasgow, Liverpool. ERC Advanced Grant funding: ~£2M.

(1) Delivery of CEDAR beam Cherenkov tagger

- developed in 1980s for ~1MHz signal rates;
- to be upgraded to NA62 kaon rate (~50MHz): replacement of existing PMTs and readout;
- unseparated beam (K⁺ fraction: 6%) \rightarrow crucial detector for background suppression

(2) Broadening the physics programme:

- Lepton Universality: $BR(K^+ \rightarrow e^+\nu)/BR(K^+ \rightarrow \mu^+\nu)$.
- (3) Key UK responsibilities:
- \rightarrow CEDAR project leader;
- \rightarrow co-convener of lepton flavour and exotics WG;
- \rightarrow chair of the conference committee;
- \rightarrow 3 (out of 10) members of editorial board.

Nose mechanical design (Liverpool). 256 PMTs, ~3MHz/PMT photon rate.

32PMTs/spot

- The $K \rightarrow \pi v v$ decays are extremely suppressed and precisely predicted within the SM.
 - \rightarrow unique sensitivity to new physics;
 - \rightarrow a way of pushing the energy frontier above 14 TeV pp interactions.
- NA62 is the first experiment to measure $BR(K \rightarrow \pi vv)$ to ~10% precision. → A timely measurement complementary to the LHC programme.
- NA62 programme spans well beyond the flagship decay mode.
 → Lepton flavour and number violation, sterile neutrinos, ...
- NA62UK: funding secured (ERC Advanced grant, Royal Society University fellowship). Significant hardware contribution + solid physics leadership.
 → Occasion for STFC to broaden physics programme at a modest investment.
- In the longer term, NA62 aims at a precision $K_L \rightarrow \pi^0 v v$ measurement.

KEK E391a: $K_L \rightarrow \pi^0 \nu \nu$

KEK E391a: final result

Signature: a high- $p_T \pi^0$ + nothing Blind analysis technique employed.

Background source		Estimated number of BG
halo neutron BG	\sim CC02- π^0	0.66 ± 0.39
	$CV-\pi^0$	< 0.36
	$CV-\eta$	0.19 ± 0.13
K_L^0 decay BG	$K_L^0 \rightarrow \pi^0 \pi^0$	$(2.4 \pm 1.8) \times 10^{-2}$
	$K_L^0 \rightarrow \gamma \gamma$	negligible
	charged modes	negligible ($\mathcal{O}(10^{-4})$)
other BG	backward π^0	< 0.05
	residual gas	negligible $(\mathcal{O}(10^{-4}))$
total		0.87 ± 0.41

Background is dominated by beam interactions

Number of K_L decays: N=($8.70\pm0.17_{stat}\pm0.59_{syst}$)×10⁹ Signal acceptance: ~1% SES: ($1.11\pm0.02_{stat}\pm0.10_{syst}$)×10⁻⁸

 $\frac{\text{Final result:}}{\text{BR}(\text{K}_{\text{L}} \rightarrow \pi^{0} \nu \nu) < 2.6 \times 10^{-8} @90\% \text{ CL}}$ PRD81 (2010) 072004

Order of magnitude above the GN limit; seen as preparation for JPARC E14 14

Next step: JPARC E14 (K^oTO)

J-PARC accelerator complex

K_L beam: suppression of halo neutrons to ~10⁻³/ K_L . Flux * RunTime * Acc = 3000×E391a (=discovery of SM decay).

- Proton energy: 30 GeV
- Intensity: 2×10¹⁴ PoT/spill
- Spill duration: 0.7s/3.3s
- Solid angle: 9µStr
- K_I/spill: 7.8×10⁶
- Decay probability: 4%

Physics runs planned: 2012-2014 (12 months in total)

NA62: signal region

NOT kinematically constrained

Kinematically constrained

Kinematic rejection power: 10^4 (K⁺ $\rightarrow \pi^+\pi^0$), 10^5 (K⁺ $\rightarrow \mu^+\nu$) Background contributes via non-Gaussian MS tails; K/ π mismatch.

E. Goudzovski / Birmingham, 11 July 2011

16