Dark Matter Experiments

Main Dark Matter Projects:

ZEPLIN-III / LUX-ZEPLIN Imperial, Edinburgh, RAL,

(Daresbury)

EDELWEISS/EURECA Oxford, Sheffield

CYGNUS (DRIFT) Sheffield, Edinburgh, STFC-Boulby

DEAP/CLEAN/DM-TPC RHUL

The Key Science Question

Strong evidence for the existence of Dark Matter

Obvious Link to LHC Physics

Focus on Direct Detection Techniques

Displacement / tracking: DRIFT, Newage, MIMAC, DM-TPC, D3

Current Results and Future Aims

Indication, Confirmation, Study

ZEPLIN III (SSR): ~560 kg.d (*)

XENON 100: 1471 kg.d

~1 evt/kg/year

Ton-scale experiments:

~10 evt/ton/year

10⁻⁶ http://dmtools.brown.ed Cross-section [pb] (normalised to nucleon) Gaitskell, Mandic, Filip (FSR) WEISS CDMS 10^{-7} 10-8 XENON 100 10-9 110707055601 10^{2} 10¹ WIMP Mass [GeV/c²]

(*) Data still blinded – result soon

ZEPLIN-III

First science run at Boulby: 83 days in 2008

Strong constraints on WIMP-nucleon scattering XS

Phase-II upgrades commissioned in 2009/10

New photomultiplier array (low background)

• New anti-coincidence veto (background reduction & diagnostic)

New calibration hardware (reduction of systematics)

• System automation (underground effort, improved stability)

Second science run completed at Boulby

- Longest run of any noble liquid WIMP detector (319 days)
- Effective fiducial exposure ~560 kg*days (4x FSR)

Ghag et al. (2011), arXiv:1103.0393

Akimov et al (2010), Astropart. Phys. 34: 151 (2010)

ZEPLIN-III

- New L_{eff} and Q_i measurements for LXe
 - L_{eff} in agreement with new beam data
- Radioactivity backgrounds
 - 18x reduction from first run due to photomultiplier upgrade
 - Confirmed negligible neutron background using new veto
- Development of data processing algorithms
 - New likelihood-based vertex reconstruction (figure below)
- Single electron emission in two-phase xenon
 - Ionisation threshold <<1 keVr for nuclear recoils
 (application to light WIMPs, coherent neutrino scattering, ...)

Solovov et al. (in preparation) – spatial likelihood maps for "living-dead" event, with multiple S1 and a single S2 pulse;

Liquid Noble Gas Expertise

ZEPLIN-III collaboration: Imperial College, STFC-RAL, University of Edinburgh, LIP-Coimbra, ITEP-Moscow (35 authors)

LUX-ZEPLIN: ZEPLIN-III + Brown, Texas A&M, CalTech, UC Berkeley, Case Western, UC Davis, Harvard, UC Santa Barbara, LBNL, Maryland, LLNL, South Dakota, Rochester, Yale, South Dakota School of Mines & Technology, MEPhI (Moscow), STFC

Daresbury (~89 members)

Note: UK groups were first in world to use two-phase noble gas technology for DM searches

Co-Pls: Gaitskell, Shutt, Sumner

Evolution of the LUX-LZ Program

TPC (\$M)	Homestake 4850	SNOLab	
LZS (1.5t Xe)	12.48 - 17.96	16.97 - 24.39	
LZD (20t Xe)	60.5 - 88.2	65.23 - 95.64*	

LUX350 will stay at Sanford Laboratory (Homestake) and UK groups will formally join that collaboration in time for first underground deployment

LUX350 Status Summary

- LUX detector is complete with cryogenic test runs underway in water tank in dedicated Surface Laboratory.
- Early 2011 Davis Complex (4850 level) excavation complete.
- May 2011: \$8m contract for outfitting of Sanford Laboratory.
- LUX will move detector underground in Spring 2012.

Cryogenic Detector Expertise

Major EDELWEISS II achievement:

ID / FID detectors with bulk / surface event discrimination.

Surface event (β) rejection: 10⁵

2012-14: Edelweiss-III 40 FID800 (~24kg fiducial)

UK contributions to EDW III:

- Ensure low-background setup
- MC modelling expertise
- Low-temperature / clean cabling
- Data analysis (oxrop-software)
- Detector / electronics expertise

Example: Oxford,
Sheffield, LSM, CNRS

→ cabling / connectors
made from known
(clean) materials

No events in nuclear recoil band

Edelweiss collaboration: CEA Saclay (IRFU, IRAMIS), CNRS-CSNSM Orsay, KIT (IK, EKP, IPE) Karlsruhe, CNRS Institut Néel Grenoble, IPN Lyon, LSM, JINR Dubna, Oxford, Sheffield (52 authors)

In Europe – EURECA: Edelweiss + MPI, TUM, Tubingen, KINR, Bordeaux, IAS, Zaragoza (~115 members)

Global cooporation: CDMS / Edelweiss combined limit arXiv:1105.3377 (114 authors, 30 affiliations)

MoU between EURECA / SuperCDMS / GEODM.

Working together on shielding and cryostat designs, detector procurement, background studies, etc.

New LSM extension for EURECA / SuperNEMO

Projet d'extension Ulisse

Existing laboratory

Galerie de sécurité

Timeline:

2010/2011: Design Study → TDR

2012: Digging out of LSM extension begins. In parallel, begin construction of EURECA components away from LSM. Aim for ~100kg stage (10⁻⁹ pb).

2014: LSM extension ready to receive EURECA.

2015: Begin data taking and in parallel improve and upgrade.

2018: One tonne target installed.

Spokesman: Hans Kraus (2005-2010), since January 2011: Gilles Gerbier

Maximizing UK Impact

The timescale is sur	mmarized here:	2011/2012	2012/2013	2013/2014	2014/2015	2015/2016
EDELWEISS	Ongoing experiment					
EURECA						
LUX350	Ongoing experiment					
LZS						

Joint Imperial, Oxford, Edinburgh, Sheffield, RAL proposal

- Science first! WIMPs before technology.
- Increase level of cooperation (rather than competition).
- Follow international recommendations for the field.
- Exploit UK expertise, safeguarding PPARC / STFC investment.
- Joint programme (Imperial, Oxford, Edinburgh, Sheffield, RAL).
- Synergies and cooperation: GEANT, fast electronics, VHDL,
 MC simulations (radioactivity, muon-induced neutrons,
 GEANT4 models, SOURCES4), neutron measurements, etc
- Migration (Kudryavtsev, Horn, Walker) allows friendly scrutiny.

DRIFT II & DTM (DRIFT III) 2010/11

Directional Detection of WIMP Dark Matter to Identify Galactic Signal

UK: Sheffield, Edinburgh, STFC

US: Occidental, UNM, CSU

New publications, including world's best limit with direction sensitivity (unblind)

N.J.C. Spooner et al. Astroparticle Physics 34 (2010) 284

E. Daw et al, sub Astroparticle Physics (2011) - arXiv:1012.5796

UK Contributions:

- built and installed new gas system for CF₄ (SI sensitivity)
- Built and installed upgrade to DAQ
- Key analysis of low background and radon reduction and emanation system
- Run all operations

Underway now: new blind analysis with x15 improved background to be released soon

Directional DM Opportunities at Boulby

- Five non-directional DM experiments have "backgrounds" above expectation - the directional sensitivity can provide a clearer signal identification and determine galactic origins - the UK can have a leading role.
- The directional field is rapidly growing, now 5 groups: DRIFT, MIMAC, NEWAGE, DM-TPC, D³ worldwide (~150 scientists). We started the CYGNUS international cooperation (Boulby2007, MIT2009, Aussois2011)

Workpackages: (1) gas, (2) background, (3) directionality, (4) halo physics

- Funding for the Boulby Palmer Laboratory secured for 3 years under STFC environment programme even though ZEPLIN has gone - a big opportunity for a re-newed UK effort
- NEW (July 11) NSF supports (3-year) continuation & expansion of operations at Boulby
- Mine company CPL supports new excavation for scale-up

Proceed to scale-up at Boulby to 24 m³ called DTM (DRIFT III module)

Scale-up Design for DTM (DRIFT III Module)

- US-UK design well advanced
- 24 m³, 4kg target
- 3D readout with track sense
- Modular to allow ton-scale
- Z-fiducialisation by +ve ion detection and thin cathode
- C, S, F targets to include spindependent sensitivity

UK current contributions: gas system, radon/background reduction, slow control, shield, site, analysis and data

DEAP/CLEAN Collaboration

17 institutions, ~85 members

MIT PI moved to RHUL Summer 2011, new group funded by ERC Starting Grant (2 PhD students, 2 PDRA from ERC 5 yr funds: €1M; U.S. NSF 3 yr funds: \$0.4M, STFC 3 yr funds: PhD studentship)

DM-TPC (5 institutions, 27 members, spokesperson J. Monroe), running (WIPP)

MiniCLEAN activities: lead μ veto system hardware/software, neutron calibration system hardware/software, neutron background simulation, WIMP analysis working group

DEAP/CLEAN Program for Dark Matter and v Physics

DEAP-1 (7 kg) μCLEAN (4 kg) MiniCLEAN (300 kg) DEAP-3600 (3600 kg) CLEAN(100T)
2006 2007 2011 2014 2018

single phase open-volume design draws on successes of v physics

Goal: observatory for dark matter, pp solar neutrinos, supernova neutrinos

MiniCLEAN (150 kg fiducial) construction: 2010-2011, run: 2012-2014 DEAP-3600 (1 tonne fiducial) construction: 2011-2013, run: 2014-2019 CLEAN (10 tonne fiducial) proposal: 2016, with depleted LAr

- Best singlet to triplet lifetime ratio:
 10⁹ electron rejection
- Favorable form-factor for coherent scattering: higher energy threshold
- Excellent scintillation light yield / \$\$
- No pile-up from drifting electrons in E-fields: kT detectors possible
- Drawback: ³⁹Ar, trade-off between background rejection and threshold, but progress in ³⁹Ar-depletion (x20)

Summary

Ton-scale detectors needed for exploring suggested cross sections and for study of WIMP properties.

Broad international agreement: need multiple targets and need multiple detection techniques.

How to prove we found dark matter? Multi-target, directionality, modulation ...

Maintain R&D: performance predictions might look nice, but what is around the next corner (i.e. the next scale-up)?

Convergence of experiments (worldwide) and also increased science-driven (cross-experiment) activity.