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Ov3pB decay - the only practical way to answer fundamental

BSM physics questions: Lepton Number violation
Is v its own anti-particle?

(A,Z) 2 (A, Z+2) + 2e

e, Lightneutrino  Majorana neutrino (v=anti-v)
exchange

> Access to absolute

neutrino mass

[T12(0V)]! = Go(Qpp,Z) IMOY|2 ¢m>?

Other possible processes: . _
V+A current :  <A>, <n> <{M,>= mIIUellz + mZIUezlz.e'o‘ + m3IUe3|2.e'B

|Ueil: mixing matrix elements; & and B: Majorana phases

Majoron emission : <g,,>

4

Supersymmetry : A ;, A ;3

1) Majorana neutrinos = See-Saw = CPV in Mr = Higgs

Physics implications:
+ leptons = Leptogenesis = B-assymetry

2) Absolute v mass scale and mass hierarchy
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Main observable: Energy sum of two electrons emitted in the decay

1.0

Allowed In
SM
AL =0

Forbidden in
SM

2v23 spectrum Ov2[ signal / AL =0

0.8 10
(Eel_—i_Ee;)/Qﬂ,B

The challenge: T12(2v) ~ 107° - 102" yr, T"2(0v) > 1025 yr
c.f. Ti2 (U/Th) ~ 10%r

Double Beta Decay is about backaround suppression!
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Different Isotopes have to be studied

IBM—2 (Barea et lachello, 2009)
® QRPA (Simkovic et al., 2008)
A SM (Caurier et al., 2008)

Isotope choice
® Qpp
® Phase space

® Isotope abundance

® Enrichment opportunities
® NME (Nuclear Matrix Elements)
2 ® T1/2(2V)

(T =G"(0,2) M (m,,)

Ge Pse Mo Mcd Bre Pre Pxe Ng

76

Phase space factor

Isotope 825e | Zr | 1Mo
Qpp, MeV 30 | 3. 3.03

G . : 33.5 . 54.5

x10-15
yr-!
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OvBp results so far

Controversial KK claim

Degenerate < 1 (m,)~04eV
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<my>*, eV
90%CL

IGEX 6Ge <0.35-0.9 *Range due to NME
uncertainties
CUORICINO 130Te <0.3-0.7

Experiment |sotope

NEMO3** 100Mo <0.3-0.9 ** Major UK involvement
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SM allowed 2vBB results

Important: Experimental input for NME
Ultimate background in future experiments

Isotope Best T1/2(2v), 10" yrs Experiment

48Ca 44 +0.6 NEMO3

6Ge 150 = 10 Heidelberg-Moscow
82Se 9.6+1.0 NEMO3
9%Zr 2.35 % 0.21 NEMO3
100Mo 0.71+0.05 NEMO3
16Cqy 2.8+0.3 NEMO3
130Te 70+ 14 NEMO3
150N 0.90 + 0.07 NEMO3

Number of events / 0.1 MeV

s

NEMO3 stopped in January 2011 after 8 yrs of data taking
to make way for SuperNEMO

T

b0 M-S
7 SIATE

Major UK involvement: UCL, Manchester, Imperial
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A highly competitive field with large number of proposed
experiments

2 . 4 ) 4 )

Ge-diodes R Tracking
Gerda/ CUORE +Calorimeter
Majorana SuperNEMO
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(Scintillating
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4 = HPXe TPC
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Crystals NEXT
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\_ /
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Experimental Approaches

Calorimeter-only. Source = Detector

Main observable:
Deposited energy

Excellent AE/E

High efficiency

Relatively compact

Some particle ID capability

Main limiting factor: background

HPGe, Bolometers, (Liquid)-Scintillators,
L Xe.

Tracking + Calorimetry. Source # Detector
(NEMO3 and SuperNEMO)

Charged particlej [ Particle individual j

(Decay vertex ) [ trajectory energy and TOF
]

Full Topology Reconstruction

Strong background suppression and control
“Smoking gun” Ov[3[3 signature
Sensitivity to different physics mechanisms of Ov[3[3

Main limiting factor: efficiency

R&D on technologies that include elements of both
CdZnTe, HPXe TPC
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Figure of Merit

€ — efficiency, W-mass number
M Xt —exposure [kg X yr]

M Xt
b xX AE

7‘1(/);(90%CL) =2 .54 x 1026y (%)

b — background [cnts kg 'kev' yr']
AE =2 X FWHM around Qg

' G()V .
FOM =T} (90%CL) X o ——— Phase-space factor normalised to 76Ge

76
Ge

Normalised to exposure 500 kg yr and assuming the same NMEs

Ov
ein Qe | IS | pwpm | Total B, |, 12 G F.O.M

-1 & . ;
window kgy:.(_.le]v keV counts (90 ;‘:.CL) G(’):Gr yr

Project | Isotope

Reliability of
expected

performance
82 -5 26 -
SNEMO Se 17% 6x10 1%x10 : numbers is not

GERDA | 7Ge 80% 0.01 40 2.1%10%6

taken into account
CUORE | 130Te 80% 0.01 5.7%x1025

EXO200 | '3¢Xe 70% |6.3x104 73 7.6x10%°

SNO+ 150Nd 70% | 7.5x104 3996 |9.4x10%4
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SuperNEMO at new LSM (Modane Underground Lab)

supernemao

j@; (~100 people) —_ :@4
. l N '/‘} UCL-HEP, UCL-MSSL, sollaboration

supernemao

collaboration

Manchester, Imperial, Warwick

I

Exposure 900 kg x yr

82Se in first instance

Isotope
> 150Nd, 48Ca under study

7/ events (Bgrd model

Background (2xFWHM based on NEMO3

around Qgp)

experience)
T12%V (90%CL) 1026 yr
<my> 40-80 eV
Pros Cons
Background suppression Efficiency
Topology (“smoking gun”) Large footprint
Physics mechanism ID*

*Superior sensitivity to alternative Ov33 mechanisms, e.g. with Majoron emission
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supernemao supernemao

:@4 SuperNEMO Module design ;@4

collaboration collaboration

Planar and modular design:
~ 100 kg of enriched isotopes (20 modules x 5 kg)

Submodule
Submodule Source and

1 module: calorimeter calibration

| IL. ,[‘ -
Source (~40 mg/cm?) 4 x 2.7 m?
82Se first but almost any isotope possible

150Nd, “4¢Ca being looked at ‘\\\s

Source 2.7m

Tracking : drift chamber ~2000 cells

in Geiger mode

Calorimeter: scintillators + PMTs
600 PMTs + scint. blocks

Modules surrounded by water

passive shielding

Submodule
tracker

2 m (assembled, ~0.44m between source and caiorime’rer)

11 July 2011 R. Saakyan, NDBD 11 27



supernemao supernemao

“©—  SuperNEMO R&D (2006-2010) o=

collaboration collaboration

Calorimeter Low Background

_ Ultra-LB detection technology
FWHM = 4% at 3 MeV Tracker mass production

UK groups: UCL-HEP, UCL-MSSL, Manchester, Imperial
Decisive UK involvement (50% of effort and budget)
R&D Responsibilities: Tracker (sole responsibility), Calorimeter, Software.
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supernemao
supernemao

SuperNEMO Demonstrator Construction
o (2010-2013) o~

collaboration
collaboration

600 calorimeter channels

Technology

Ultimate prove of BG levels
Physics

Sensitive to K-K claim

2000 tracker cells
7 kg source foil X

7kg of 82Se
Bgrd < 0.06 events/yr

l(o (e @\l e e\ e 11w
A | [ 4 )
2 A el v e vy R ey

The first 0 bgrd experiment

T (90%CL) = 2.56 X 10%* x ¢ yrs

i@

fra

-

FECECESEREREERE
BEER
ezl t=

Gerda-l sensitivity in 2.5 years -
6.5x10%% yr (equivalent to 3x102°yr with 76Ge)

UK groups: UCL-HEP, UCL-MSSL, Manchester, Imperial, Warwick
Decisive UK involvement (40% of Demonstrator effort and budget)
Responsibilities: Entire Tracker, large software effort.

UK members lead a number of key WPs and provide international
co-spokesperson (R. Saakyan)
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supernemao supernemao

?@4 SuperNEMO timeline and budget (UK) 1@4

collaboration collaboration

Demonstrator

construction £3M* Demonstrator Physics Running
' = N\ _— A

2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017

! 1

Installation K-K claim sensitivity

at LSM

*UK contribution FE costs
** UK estimated contribution Construction and exploitation of full SuperNEMO detector

FE costs £10-15M*
(Total costs RG + Project Grant)

Modular Design
Continuous physics running

_ n n =
in parallel with construction
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P
— N L7 Oxford, Sussex, Leeds,
2SS Liverpool, Sheffield, QMUL
o

SNOLAB 3”‘ incts Ay thenaene
Sudbury, Ontario SNO+ Liquid Scintillator

- compatible with acrylic, undiluted

- high light yield

* pure (light attenuation length in excess of 20 m at 420 nm)
- low cost

* high flash point 130°C safe

- low foxicity safe

- smallest scattering of all scintillating solvents investigated
- density r = 0.86 g/cm?®

- metal-loading compatible

Thanks to S. Biller for providing SNO+ slides
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SNO+ Double Beta Decay

A liquid scintillator detector has poor energy - ,
resolution... but HUGE quantities of isotope | S
(high statistics) and low backgrounds help '
compensate

B Numerical Simulation

Optimisation of Nd loading fraction

Large, homogeneous liquid detector leads
to well-defined background model

— fewer types of material near fiducial volume
— meters of self-shielding

o
w

Relative Lifetime Sensitivity
o
()

“Source in”/“Source out” capability to test
backgrounds, improve purification, etc.

Interesting new technique with a rapid
timescale that could perhaps be pushed i R B
even further ' . Nd concentration (%)

Isotope of choice "°Nd (Qgg = 3.4
MeV)

Challenges .
| o | 0.1-0.3% load of "@Nd in ~800 ton
* Very stringent radiopurity requirements of LS
« <10 g of U/Th per g of LS - demonstrated « 19ONd abundance =5.6%. 0.3%= 135

by Borexino
kg of 1°0Nd
« <10 g of U/Th per g of Nd - very tough and 99
to be demonstrated
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SNO+ Double Beta Decay
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Background Model and Ov3(3 signal. Likelihood fit to observe signal
distortion
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SNO+ Timeline and budget (UK)

Possible Phase 2
Pure LS run N Enriched Nd?
NieHereiee] litguie Ovpp Other isotopes?

T scintillator running AL
A '
a N

2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020

Possible run with pure scintillator
in between (precision solar v’s)

See talk by S. Biller for SNO+ non-DBD physics

Solar v’s
Reactor v's
Geo V’s

— —

Old News:

Alpha-4 rated in last Prioritisation Exercise

Bridging funds provided by STFC until end of 2012
New News:

Modest PRD submitted for calibration system upgrade (~£58K).
Continued project support is entirely exploitation (travel, postdocs &
academic time), so no further major requests are needed from PPRP.
Following positive SoI feedback exploitation support will be requested via the
consolidated grants.
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GERDA - ’°Ge

Enriched “naked” Ge diodes in LAr

High Efficiency
FWHM = 4 keV

Phase | :18 kg of 86% enriched detectors
Phase 2 : 40 kg of enriched detectors

Phase-Il running starts this year!

Background goal: b = 0.01 cnts/(kg keV yr)
Recent result: b = 0.06 cnts/(kg keV yr)

Future ambitious goal: b = 0.001 cnts/(kg keV yr)

Eventually 1t joined GERDA and Majorana

11 July 2011
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CUORE - 3%Te

TeO- bolometers. 139Te abundance 34%
High Efficiency

FWHM = 5 keV

741 kg of TeO2 crystals = 200 kg 3%Te

g )= Mg
=~ ||| s

e l‘xl

|
14 -

I I

-

Background goal: b = 0.01 cnts/(kg keV yr)
Background with some crystals: b ~ 0.06 cnts/(kg keV yr)

Future ambitious goal: b = 0.001 cnts/(kg keV yr)

CUOREDO (1 out of 19 towers) starts 2012
Start-up of the rest ~2013-2014




EXO0200 - 13%Xe KamLAND-Zen

Technique: LXe - ionisation + scintillation
200 kg of LXe enriched to 80% of 36Xe
Expected FWHM at Qgg = 3.8%

Expected b = 6.25%x10 cnts/(kg keV yr) = 20 events/yr around Qgg
Engineering run at WIPP - December 2010

Started running with enriched Xe - spring 2011. Performance numbers | 36Xe 400 k loadec
to be released soon. g

in mini-balloon, R=1./m

Ba+ tagging R&D under way.

Study of = 1t option underway
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Ton-experiment, 10 meV and other speculations

1

O(100kg) generation will reach FOM ~ 4x1026 yr
by 2018-2020. <m,> = 50-100 meV

To exclude IH, i.e. to get 10-20 meV, we need

FOM = ~1028 yr. ooV M X1

(m,) = (M x1)

background limited

Example: "°Ge (GERDA-Majorana) even with
ambitious b = 0.001 cnts/(kg keV yr) one needs
30 tons (!) of enriched (!!) "°Ge measured over
oyr! Similar for other projects.

Half Life Limit (a.u.)
AN W s oo N oD

Exposure (kg years)
Thus for 2 1ton stage we have to find a

“backqround-free” solution

Future “Ton” experiments

Example:150kg x 5 yrs of 48Ca, if no
background and €~40% , gives required FOM
=108 yr.

222Rn poses serious challenge
(How to control ~1atom/Nxm?3
contamination?)

— NEMO3 had no background in this region Future may belong to “Big Three”
after 8 years of running! 48Cq

967 150\ g
— But we need to learn how to enrich 48Ca 4.27 MeV 3.4 MeV 3.4 MeV

(0.19% nat. abundance) to break away from 222Rn progeny

May not need 1t to reach 10-20 meV 214B;
If background free 3.27 MeV
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The Roadmap

Scenario 1 (”’%) ~01eV
2011 2015 2020

Measurements with several isotopes. Possibility to disentangle
LNV physics mechanism (almost background free with S-NEMO).
Possibility to access Majorana CP phases.

Scenario 2 <m‘> <0.1eV

2015 2020

) ) “Ton” detector
Understanding backgrounds and limiting factors (Radon?) Background-free ConStrutﬁon

with O(100kg) experiments detector technology
Isotope enrichment technology. : > and isotope(s) choice.

“Ton” Experiment must have the sensitivity
to establish or exclude the IH
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Message to take home

OviBp is a high risk high return endeavour but (£/science) is
among the best

— Only way to answer questions on Full Lepton Number violation and
nature and mechanism behind neutrino mass

UK has a healthy OvBf8 programme

— Leadership role in SuperNEMO

— Crucial player in SNO+ through previous UK investment

Both experiments are competitive

— KK-claim by 2015, ~50 meV by 2020

And unique

— Clear background model = main input for future “Ton” background

free experiment

— Unlike most competitors can measure many (almost any?) isotopes,
including the “Big Three” = a likely choice for future 10 meV project.
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NON-DBD Physics
with SNO+

Steve Biller (Oxford)




ONeutrinoless double beta decay
® various isotopes possible

oLow energy solar neutrinos
® pep, CNO, °B and potentially "Be & pp

oGeo-neutrinos ® unmatched

0240 km baseline reactor neutrino oscillation
® Am® resolution potentially better than KamLAND

oSupernova neutrinos ® major player

o"Invisible” modes of nucleon decay
® unique sensitivity with initial water data
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0240 km baseline reactor neutrino oscillation
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Simulated SNO+ Energy Spectrum
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After 3 years: ~5% uncertainty
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'CNO Signal
After 3 years: ~8% uncertainty
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210Bj background
Can be inferred from 21°Po peak

—

= T ——
13 tA-A5_ 4.5,.{°K background

Energy (MeV) Can be constrained by peak

3600 pep events/(kton-year), for electron recoils >0.8 MeV

SNOLAB depth of 6000 mwe gives a muon flux 800 times less than
KamLAND and virtually eliminates background from !!C, making SNO+
uniquely sensitive for a precision measurement.




CNO neutrinos:

Improved solar spectral measurements and more detailed modeling
yields an improved determination of solar photospheric composition
that is ~25% lower in metallicity than values inferred over a decade ago

(Asplund et al., 2005 & 2009)




GS98
AGSS09
AGSS09ph
AGS05

Contradiction with
Helioseismology !
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1.0
Serenelli et al., 2009

.0

Improved solar spectral measurements and more detailed modeling
yields an improved determination of solar photospheric composition
that is ~25% lower in metallicity than values inferred over a decade ago

(Asplund et al., 2005 & 2009)




TABLE I: Predicted solar neutrino fluxes from solar mod-
els. The table presents the predicted fluxes, in units of
10'°(pp), 10°("Be), 10°(pep,*N,'* 0), 10°(*B,'"F), and
10%(hep) cm™%s~'. Columns 2 and 3 show BPS08 for high
and low metalicities; and column 4 the flux differences be-
tween the models.

Source BPS08(GS) BPSO8(AGS) Difference

5.97(1 £+ 0.006) 6.04(1 4+ 0.005)  1.2%
1.41(1 £0.011) 1.45(1 £0.010) 2.8%
7.90(1 £ 0.15) 8.22(1+0.15)  4.1%
5.07(140.06) 4.55(1 =+ 0.06) 10%
5.94((1+£0.11) 4.72(1+0.11)  21%
2.88(1+0.15) 1.89(1 T35 34%
2050112 48401300 31%
5.82CL YD) 3Bl Tt 44%

Pena-Garay and Serenelli, arXiv:0811.2424v1 (2008



pep neutrinos:

Observing change in v, survival probability

over the MSW transition region probes the
nature of the neutrino-matter interaction

Possible New Physics Includes:
«Sterile neutrino admixtures

*Neutrino Decay
*Mass Varying Neutrinos
Non-Standard Interactions
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An Odd Mixture of 3 Il
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An Odd Mixture of 3 Il
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Need precision measurements of all mixing angles.

Solar V's currently the ONLY practical way of improving O,




e Data

BPS09(GS98)+LMA-MSW

SNO+ will do better
for low energy B

BPSO09(AGS05)+LMA-MSW

Counts/ 2 MeV / 345.3 days

-
14

Better measurement Eneray eV
of '‘Be Possibly 1st real-time
measurement of pp

One year with $0% fiducial volume, backgrounds at Borexino levels
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Lingering Issues

1. Solar Composition Problem

genuine mystery in need of resolution |
also want better understanding of CNO cycle

2. Nature of MSW Transition

critical probe of neutrino/matter interactions

numerous alternative models tested
current data looks intriguing

3. Improve Precision on 0;,

test Tri-Bi-Maximal scenarios

4. Check Fundamental Processes

testing basic understanding is what we do!



SNO+: First Data in 2012

Rough Order or Running:

H,O ~ couple months nucleon
decay

Pure Scintillator ~ several months initial
solar study

Nd-loaded Scintillator ~ few years [ppase |

BB

detailed
solar study

Pure Scintillator ~ few years

Follow-on Phase ~ ?




BACKUP



LSM Extension

Schedule

® Safety tunnel construction start - Sep 2009

® Safety tunnel, end of civil construction - 2012

® Detailed study of LSM extension (ULISSE) - 2010

® Deadline for final decision/money commitment - 2012
® Excavation of new Lab completed - 2013

® Outfitting completed, Lab ready to host experiments - 2014

Minimal scenario: 45,000m?® (100m long), 12M€ excavation + 3M€ outfitting

29 ULISSE workshop in October’09. 11 LOIs received.




