

Neutrinoless Double Beta Decay Experiments

<u>Outline</u>

- Physics
- Experiments (Emphasis on UK programme)
- Roadmap

Ruben Saakyan PPAP Community Meeting Birmingham 11 July 2011

0vββ decay - the only practical way to answer fundamental BSM physics questions:Lepton Number violation

Lepton Number violation Is v its own anti-particle?

+ leptons ⇒ Leptogenesis ⇒ B-assymetry

2) Absolute v mass scale and mass hierarchy

R. Saakyan, NDBD

Main observable: Energy sum of two electrons emitted in the decay

<u>The challenge</u>: $T_{1/2}(2v) \sim 10^{19} - 10^{21} \text{ yr}$, $T^{1/2}(0v) > 10^{25} \text{ yr}$ c.f. $T_{1/2} (U/Th) \sim 10^{10} \text{yr}$

Double Beta Decay is about background suppression!

Different Isotopes have to be studied

Isotope choice

- Qββ
- Phase space
- Isotope abundance
- Enrichment opportunities
- NME (Nuclear Matrix Elements)

• T_{1/2}(2v)

Phase space factor

Isotope	⁴⁸ Ca	⁷⁶ Ge	⁸² Se	⁹⁶ Zr	¹⁰⁰ Mo	¹¹⁶ Cd	¹³⁰ Te	¹³⁶ Xe	¹⁵⁰ Nd
$Q_{\beta\beta}$, MeV	4.27	2.04	3.0	3.35	3.03	2.8	2.53	2.48	3.37
G ⁰ v	75.8	7.6	33.5	69.7	54.5	58.9	52.8	56.3	249
$\times 10^{-15}$									

<u>0vββ results so far</u>

Experiment	Isotope	<m<sub>v>*, eV 90%CL</m<sub>	
IGEX	⁷⁶ Ge	<0.35-0.9	*Range due to NME
CUORICINO	¹³⁰ Te	<0.3-0.7	uncertainties
NEMO3**	¹⁰⁰ Mo	<0.3-0.9	** Major UK involvement

SM allowed 2vββ results

Important: Experimental input for NME Ultimate background in future experiments

Isotope	Best T _{1/2} (2v), 10 ¹⁹ yrs	Experiment		
⁴⁸ Ca	4.4 ± 0.6	NEMO3	Å 40000 ₩	• NEMO 3
⁷⁶ Ge	150 ± 10	Heidelberg-Moscow	/ 0.1	• Data ββ ¹⁰⁰ Μο
⁸² Se	9.6 ± 1.0	NEMO3	ents -	Tot bkg
⁹⁶ Zr	2.35 ± 0.21	NEMO3	a jo 20000	
¹⁰⁰ Mo	0.71 ± 0.05	NEMO3	nber	
¹¹⁶ Cd	2.8 ± 0.3	NEMO3	D 10000	1
¹³⁰ Te	70 ± 14	NEMO3	o [
¹⁵⁰ Nd	0.90 ± 0.07	NEMO3	0	0.5 1 1.5 2 2.5 3 3.5 E _{TOT} (MeV)

NEMO3 stopped in January 2011 after 8 yrs of data taking to make way for **SuperNEMO**

Major UK involvement: UCL, Manchester, Imperial

A highly competitive field with large number of proposed experiments

Experimental Approaches

Calorimeter-only. <u>Source = Detector</u>

Main observable: Deposited energy

Excellent $\Delta E/E$ High efficiency Relatively compact Some particle ID capability

Main limiting factor: background

HPGe, Bolometers, (Liquid)-Scintillators, LXe.

Tracking + Calorimetry. <u>Source ≠ Detector</u> (NEMO3 and SuperNEMO)

Full Topology Reconstruction

Strong background suppression and control "Smoking gun" 0vββ signature Sensitivity to different physics mechanisms of 0vββ

Main limiting factor: efficiency

R&D on technologies that include elements of both CdZnTe, HPXe TPC

R. Saakyan, NDBD

Figure of Merit

$$T_{1/2}^{0\nu}(90\% CL) = 2.54 \times 10^{26} \,\mathrm{y} \,\left(\frac{\varepsilon}{W}\right) \sqrt{\frac{M \times t}{b \times \Delta E}}$$

 ε – efficiency, W-mass number $M \times t$ – exposure [kg × yr] b – background [cnts kg⁻¹kev⁻¹ yr⁻¹] $\Delta E = 2 \times FWHM$ around $Q_{\beta\beta}$

 $FOM = T_{1/2}^{0\nu}(90\% CL) \times \frac{G^{0\nu}}{G_{7^{6}Ge}^{0\nu}}$

Phase-space factor normalised to ⁷⁶Ge

Normalised to exposure 500 kg yr and assuming the same NMEs

Project	Isotope	ε in Q _{ββ} window	b [cnts kg ⁻¹ keV ⁻¹ yr ⁻¹]	FWHM keV	Total B, counts	T _{1/2} (90%CL) yr	$\frac{G^{0\nu}}{G^{0\nu}_{^{76}Ge}}$	F.O.M yr
GERDA	⁷⁶ Ge	80%	0.01	4	40	2.1×10 ²⁶	1	2.1×10 ²⁶
SNEMO	⁸² Se	17%	6×10⁻⁵	120	7	1×10 ²⁶	4.4	4.4×10 ²⁶
CUORE	¹³⁰ Te	80%	0.01	5	185	5.7×10 ²⁵	6.9	4×10 ²⁶
EXO200	¹³⁶ Xe	70%	6.3×10 ⁻⁴	94	73	7.6×10 ²⁵	7.4	5.6×10 ²⁶
SNO+	¹⁵⁰ Nd	70%	7.5×10 ⁻⁴	300	3996	9.4×10 ²⁴	32.8	3.1×10 ²⁶

Reliability of expected performance numbers is **not** taken into account

SuperNEMO at new LSM (Modane Underground Lab)

SuperNEMO Module design

<u>Planar</u> and <u>modular</u> design:

 \sim 100 kg of enriched isotopes (20 modules x 5 kg)

1 module:

<u>Source</u> (~40 mg/cm²) 4 x 2.7 m² ⁸²Se first but almost any isotope possible ¹⁵⁰Nd, ⁴⁸Ca being looked at

Tracking : drift chamber ~2000 cells in Geiger mode <u>Calorimeter:</u> scintillators + PMTs 600 PMTs + scint. blocks <u>Modules</u> surrounded by water passive shielding

2 m (assembled, ~0.44m between source and calorimeter)

SuperNEMO R&D (2006-2010)

Calorimeter FWHM = 4% at 3 MeV

Low Background Tracker mass production

Ultra-LB detection technology

<u>UK groups:</u> UCL-HEP, UCL-MSSL, Manchester, Imperial **Decisive UK involvement (50% of effort and budget)** P&D Responsibilities: Tracker (cole responsibility). Colorimeter

R&D Responsibilities: Tracker (sole responsibility), Calorimeter, Software.

SuperNEMO Demonstrator Construction (2010-2013)

Technology Ultimate prove of BG levels Physics Sensitive to K-K claim

7kg of ⁸²Se Bgrd ≤ 0.06 events/yr

The first 0 bgrd experiment

$$T_{1/2}^{0\nu}(90\% CL) = 2.56 \times 10^{24} \times t \text{ yrs}$$

Gerda-I sensitivity in 2.5 years - 6.5×10²⁴ yr (equivalent to 3×10²⁵yr with ⁷⁶Ge)

<u>UK groups:</u> UCL-HEP, UCL-MSSL, Manchester, Imperial, Warwick Decisive UK involvement (40% of Demonstrator effort and budget) Responsibilities: Entire Tracker, large software effort. UK members lead a number of key WPs and provide international co-spokesperson (R. Saakyan)

11 July 2011

SNOLAB Sudbury, Ontario Canada

SNO+ Liquid Scintillator

- · compatible with acrylic, undiluted
- high light yield
- pure (light attenuation length in excess of 20 m at 420 nm)
- low cost
- high flash point 130°C safe
- low toxicity

safe

- smallest scattering of all scintillating solvents investigated
- density $r = 0.86 \text{ g/cm}^3$
- metal-loading compatible

Thanks to S. Biller for providing SNO+ slides

SNO+ Double Beta Decay

- A liquid scintillator detector has poor energy resolution... but HUGE quantities of isotope (high statistics) and low backgrounds help compensate
- Large, homogeneous liquid detector leads to well-defined background model
 - fewer types of material near fiducial volume
 - meters of self-shielding
- "Source in"/"Source out" capability to test backgrounds, improve purification, etc.
- Interesting new technique with a rapid timescale that could perhaps be pushed even further

- Isotope of choice ${}^{150}Nd (Q_{\beta\beta} = 3.4 MeV)$
- 0.1-0.3% load of ^{nat}Nd in ~800 ton of LS
 - ¹⁵⁰Nd abundance = 5.6%. 0.3% ⇒ 135 kg of ¹⁵⁰Nd

<u>Challenges</u>

- Very stringent radiopurity requirements
 - < 10⁻¹⁷ g of U/Th per g of LS demonstrated by Borexino
 - < 10⁻¹⁴ g of U/Th per g of Nd very tough and to be demonstrated

SNO+ Double Beta Decay

Background Model and $0\nu\beta\beta$ signal. Likelihood fit to observe signal distortion

SNO+ Timeline and budget (UK)

Following <u>positive</u> SoI feedback exploitation support will be requested via the consolidated grants.

GERDA - ⁷⁶Ge

Enriched "naked" Ge diodes in LAr

High Efficiency FWHM = 4 keV

Phase I :18 kg of 86% enriched detectors Phase 2 : 40 kg of enriched detectors

Phase-I running starts this year!

Background goal: b = 0.01 cnts/(kg keV yr) Recent result: b = 0.06 cnts/(kg keV yr)

Future ambitious goal: b = 0.001 cnts/(kg keV yr)

Eventually 1t joined GERDA and Majorana

CUORE - ¹³⁰Te

TeO₂ bolometers. ¹³⁰Te abundance 34% High Efficiency FWHM = 5 keV 741 kg of TeO₂ crystals \Rightarrow 200 kg ¹³⁰Te

Background goal: b = 0.01 cnts/(kg keV yr) Background with some crystals: b ~ 0.06 cnts/(kg keV yr)

Future ambitious goal: b = 0.001 cnts/(kg keV yr)

CUORE0 (1 out of 19 towers) starts 2012 Start-up of the rest ~2013-2014

EXO200 - ¹³⁶Xe

Technique: LXe - ionisation + scintillation 200 kg of LXe enriched to 80% of 136 Xe Expected FWHM at Q_{ββ} = 3.8%

Expected b = 6.25×10^{-4} cnts/(kg keV yr) \Rightarrow 20 events/yr around $Q_{\beta\beta}$ Engineering run at WIPP - December 2010

Started running with enriched Xe - spring 2011. Performance numbers to be released soon.

Ba+ tagging R&D under way.

Study of \geq 1t option underway

KamLAND-Zen ¹³⁶Xe

Ton-experiment, 10 meV and other speculations

- O(100kg) generation will reach FOM ~ 4×10²⁶ yr by 2018-2020. <m_v> = 50-100 meV
- To exclude IH, i.e. to get 10-20 meV, we need FOM = $\sim 10^{28}$ yr.
- <u>Example</u>: ⁷⁶Ge (GERDA-Majorana) even with ambitious b = 0.001 cnts/(kg keV yr) one needs
 30 tons (!) of enriched (!!) ⁷⁶Ge measured over 5yr! Similar for other projects.
- Thus for ≥ 1ton stage we have to find a "background-free" solution
- Example:150kg x 5 yrs of ⁴⁸Ca, if no background and ε~40%, gives required FOM =10²⁸ yr.
 - NEMO3 had no background in this region after 8 years of running!
 - But we need to learn how to enrich ⁴⁸Ca (0.19% nat. abundance)

May not need 1t to reach 10-20 meV if background free

Future "Ton" experiments

²²²Rn poses serious challenge (How to control ~1atom/N×m³ contamination?) Future may belong to "Big Three"

⁴⁸ Ca	⁹⁶ Zr	¹⁵⁰ Nd			
4.27 MeV	3.4 MeV	3.4 MeV			
to break away from ²²² Rn progeny					
	²¹⁴ Bi				
3.27 MeV					

•

The Roadmap

Scenario 1

$$\langle m_v \rangle \sim 0.1 \text{ eV}$$

 2011
 2015
 2020

 Measurements with several isotopes. Possibility to disentangle
 2010

 LNV physics mechanism (almost background free with S-NEMO).
 Possibility to access Majorana CP phases.

 Possibility to access Majorana CP phases.
 Scenario 2
 $\langle m_v \rangle \ll 0.1 \text{ eV}$

 2011
 2015
 2020

 Understanding backgrounds and limiting factors (Radon?)
 "Background-free" detector technology and isotope(s) choice.

"Ton" Experiment must have the sensitivity to establish or exclude the IH

R. Saakyan, NDBD

"Ton" detector

construction

Message to take home

- Ονββ is a high risk high return endeavour but (£/science) is among the best
 - Only way to answer questions on Full Lepton Number violation and nature and mechanism behind neutrino mass
- UK has a healthy 0vββ programme
 - Leadership role in SuperNEMO
 - Crucial player in SNO+ through previous UK investment
- Both experiments are competitive
 - KK-claim by 2015, ~50 meV by 2020
- And unique
 - Clear background model ⇒ main input for future "Ton" background

free experiment

 Unlike most competitors can measure many (almost any?) isotopes, including the "Big Three" ⇒ a likely choice for future 10 meV project.

NON-DBD Physics with SNO+

Steve Biller (Oxford)

Physics with Liquid Scintillator

Neutrinoless double beta decay
Reverse isotopes possible

- Low energy solar neutrinos
 ® pep, CNO, ⁸B and potentially ⁷Be & pp
- •Geo-neutrinos ® unmatched
- $\circ 240~km$ baseline reactor neutrino oscillation $\ensuremath{\mathbb{B}}\,\Delta m^2$ resolution potentially better than KamLAND
- •Supernova neutrinos ® major player
- **"Invisible" modes of nucleon decay** ® unique sensitivity with initial water data

Physics with Liquid Scintillator

Neutrinoless double beta decay
 ® various isotopes possible

•Low energy solar neutrinos
® pep, CNO, ⁸B and potentially ⁷Be & pp

•Geo-neutrinos ® unmatched

 $\circ 240~km$ baseline reactor neutrino oscillation $\ensuremath{\mathbb{B}}\,\Delta m^2$ resolution potentially better than KamLAND

•Supernova neutrinos ® major player

• **"Invisible" modes of nucleon decay** ® unique sensitivity with initial water data

Simulated SNO+ Energy Spectrum

3600 pep events/(kton·year), for electron recoils >0.8 MeV

SNOLAB depth of 6000 mwe gives a muon flux 800 times less than KamLAND and virtually eliminates background from ¹¹C, making SNO+ uniquely sensitive for a precision measurement.

Improved solar spectral measurements and more detailed modeling yields an improved determination of solar photospheric composition that is ~25% lower in metallicity than values inferred over a decade ago

(Asplund et al., 2005 & 2009)

Improved solar spectral measurements and more detailed modeling yields an improved determination of solar photospheric composition that is ~25% lower in metallicity than values inferred over a decade ago

(Asplund et al., 2005 & 2009)

TABLE I: Predicted solar neutrino fluxes from solar models. The table presents the predicted fluxes, in units of $10^{10}(pp)$, $10^{9}(^{7}\text{Be})$, $10^{8}(pep, ^{13}\text{N}, ^{15}\text{O})$, $10^{6}(^{8}\text{B}, ^{17}\text{F})$, and $10^{3}(hep) \text{ cm}^{-2}\text{s}^{-1}$. Columns 2 and 3 show BPS08 for high and low metalicities; and column 4 the flux differences between the models.

Source	BPS08(GS)	BPS08(AGS)	Difference
pp	$5.97(1 \pm 0.006)$	$6.04(1 \pm 0.005)$	1.2%
pep	$1.41(1 \pm 0.011)$	$1.45(1 \pm 0.010)$	2.8%
hep	$7.90(1 \pm 0.15)$	$8.22(1 \pm 0.15)$	4.1%
$^{7}\mathrm{Be}$	$5.07(1 \pm 0.06)$	$4.55(1 \pm 0.06)$	10%
^{8}B	$5.94((1\pm 0.11)$	$4.72(1 \pm 0.11)$	21%
^{13}N	$2.88(1 \pm 0.15)$	$1.89(1 \ _{-0.13}^{+0.14})$	34%
$^{15}\mathrm{O}$	$2.15(1 \ _{-0.16}^{+0.17})$	$1.34(1 \ _{-0.15}^{+0.16})$	31%
$^{17}\mathrm{F}$	$5.82(1 \ _{-0.17}^{+0.19})$	$3.25(1 \ _{-0.15}^{+0.16})$	44%

Pena-Garay and Serenelli, arXiv:0811.2424v1 (2008)

Observing change in v_e survival probability over the MSW transition region probes the nature of the neutrino-matter interaction

Possible New Physics Includes:

- Sterile neutrino admixtures
- Neutrino Decay
- •Mass Varying Neutrinos
- Non-Standard Interactions

Friedland, Lunardini and Peña-Gara, 2004

Friedland, Lunardini and Peña-Gara, 2004

An Odd Mixture of 3 !!

An Odd Mixture of 3 !!

$$\begin{bmatrix} |U_{e1}|^2 & |U_{e2}|^2 & |U_{e3}|^2 \\ |U_{\mu 1}|^2 & |U_{\mu 2}|^2 & |U_{\mu 3}|^2 \\ |U_{\tau 1}|^2 & |U_{\tau 2}|^2 & |U_{\tau 3}|^2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \\ \frac{1}{6} & \frac{1}{3} & \frac{1}{2} \end{bmatrix}.$$
$$\theta_{12} = \sin^{-1} \left(\frac{1}{\sqrt{3}} \right) \simeq 35.3^{\circ} \quad \theta_{23} = 45^{\circ}$$
$$\theta_{13} = 0 \qquad \qquad \delta = 0.$$

Need precision measurements of all mixing angles. Solar V's currently the $\underline{\text{ONLY}}$ practical way of improving θ_{12}

SNO+ will do better for low energy ⁸B

Better measurement of ⁷Be

Possibly 1st real-time measurement of pp

Lingering Issues 1. Solar Composition Problem genuine mystery in need of resolution ! also want better understanding of CNO cycle 2. Nature of MSW Transition critical probe of neutrino/matter interactions numerous alternative models tested current data looks intriguing 3. Improve Precision on θ_{12} test Tri-Bi-Maximal scenarios 4. Check Fundamental Processes testing basic understanding is what we do!

SNO+: First Data in 2012

Rough Order or Running:

- $H_2O \sim couple months$
- Pure Scintillator ~ several months
- Nd-loaded Scintillator ~ few years
- Pure Scintillator ~ few years

Follow-on Phase ~ ?

Phase II ββ? Other ?

BACKUP

LSM Extension

Schedule

- Safety tunnel construction start Sep 2009
- Safety tunnel, end of civil construction 2012
- Detailed study of LSM extension (ULISSE) 2010
- Deadline for final decision/money commitment 2012
- Excavation of new Lab completed 2013
- Outfitting completed, Lab ready to host experiments 2014

Minimal scenario: 45,000m³ (100m long), 12M€ excavation + 3M€ outfitting

2^d ULISSE workshop in October'09. 11 LOIs received.