
Neutrinoless Double Beta Decay Experiments

• Physics 
• Experiments (Emphasis on UK programme)
• Roadmap

Ruben Saakyan
PPAP Community Meeting

Birmingham
11 July 2011 

Outline



11 July 2011 R. Saakyan, NDBD 2

0νββ decay - the only practical way to answer fundamental 
BSM physics questions:

(A,Z) →(A, Z+2) + 2e-

Light neutrino
 exchange

Majorana neutrino (ν=anti-ν)

Access to absolute
neutrino mass

Other possible processes:
V+A current :   <λ>, <η>

Majoron emission :  <gM>

Supersymmetry : λ’111,  λ
’
113 

[T1/2(0ν)]-1 = G0ν(Qββ,Z) |M0ν|2 <mν>2

<mν>= m1|Ue1|2 + m2|Ue2|2.eiα + m3|Ue3|2.eiβ

|Uei|: mixing matrix elements; α and β: Majorana phases

Lepton Number violation
Is v its own anti-particle?

Physics implications:
1) Majorana neutrinos ⇒ See-Saw ⇒ CPV in MR ⇒ Higgs 
+ leptons ⇒ Leptogenesis ⇒ B-assymetry
2) Absolute v mass scale and mass hierarchy 
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Main observable: Energy sum of two electrons emitted in the decay

The challenge: T1/2(2v) ~ 1019 - 1021 yr, T1/2(0v) > 1025 yr
                          c.f. T1/2 (U/Th) ~ 1010yr

Double Beta Decay is about background suppression!

Allowed in 
SM
ΔL =0

Forbidden in 
SM
ΔL =0
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Different Isotopes have to be studied
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S. Schönert, TAUP 2009 

Comparison of DBD isotopes: 
Recent calculations of nuclear matrix elements 

Is M decreasing with A-2/3 (IBM-2, QRPA) or constant with A (SM) ? 

Isotope choice
• Qββ

• Phase space
• Isotope abundance
• Enrichment opportunities
• NME (Nuclear Matrix Elements)
• T1/2(2ν)

Isotope
Qββ, MeV

48Ca
4.27

76Ge
2.04

82Se
3.0

96Zr
3.35

100Mo
3.03

116Cd
2.8

130Te
2.53

136Xe
2.48

150Nd
3.37

G0ν

×10-15 
yr-1

75.8 7.6 33.5 69.7 54.5 58.9 52.8 56.3 249

Phase space factor
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214Bi 214Bi0νββ ???

unknown

Klapdor et al. (KKDC) (2004)

Controversial KK claim

 mν  0.4 eV

Experiment Isotope
<mv>*, eV 

90%CL

IGEX 76Ge <0.35-0.9

CUORICINO 130Te <0.3-0.7

NEMO3** 100Mo <0.3-0.9

0νββ results so far

*Range due to NME 
uncertainties

** Major UK involvement
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SM allowed 2νββ results

Isotope Best T1/2(2v), 1019 yrs Experiment
48Ca 4.4 ± 0.6 NEMO3
76Ge 150 ± 10 Heidelberg-Moscow
82Se 9.6 ± 1.0 NEMO3
96Zr 2.35 ± 0.21 NEMO3

100Mo 0.71 ± 0.05 NEMO3
116Cd 2.8 ± 0.3 NEMO3
130Te 70 ± 14 NEMO3
150Nd 0.90 ± 0.07 NEMO3

NEMO3 stopped in January 2011 after 8 yrs of data taking
to make way for SuperNEMO

Major UK involvement: UCL, Manchester, Imperial

Important: Experimental input for NME
                  Ultimate background in future experiments
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A highly competitive field with large number of proposed 
experiments
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Ge-diodes
Gerda/
Majorana

Bolometers
CUORE

Tracking
+Calorimeter
SuperNEMO

Scintillating 
bolometers
Lucifer/
BoLUX

Liquid scintillator
SNO+/
KamLAND-Zen

LXe, EXO

Scintillating  
Crystals 
CANDLES

HPXe TPC
EXO-gas/
NEXT

CZT
COBRA
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Experimental Approaches
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Tracking + Calorimetry. Source ≠ Detector
(NEMO3 and SuperNEMO)

Calorimeter-only. Source = Detector

Excellent ΔE/E
High efficiency
Relatively compact
Some particle ID capability

Main observable:
Deposited energy

Main limiting factor: background
Strong background suppression and control 
“Smoking gun” 0νββ signature
Sensitivity to different physics mechanisms of 0νββ

Main limiting factor: efficiency

Full Topology Reconstruction

HPGe, Bolometers, (Liquid)-Scintillators,
LXe.

R&D on technologies that include elements of both
CdZnTe, HPXe TPC
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Figure of Merit

Phase-space factor normalised to 76Ge

Project Isotope ε in Qββ 
window

b [cnts 
kg-1keV-1

yr-1]

FWHM 
keV

Total B, 
counts

T1/2 
(90%CL) 

yr

F.O.M
 yr

GERDA 76Ge 80% 0.01 4 40 2.1×1026 1 2.1×1026

SNEMO 82Se 17% 6×10-5 120 7 1×1026 4.4 4.4×1026

CUORE 130Te 80% 0.01 5 185 5.7×1025 6.9 4×1026

EXO200 136Xe 70% 6.3×10-4 94 73 7.6×1025 7.4 5.6×1026

SNO+ 150Nd 70% 7.5×10-4 300 3996 9.4×1024 32.8 3.1×1026

Normalised to exposure 500 kg yr and assuming the same NMEs

Reliability of 
expected 
performance
numbers is not
taken into account
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SuperNEMO at new LSM (Modane Underground Lab)
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Exposure 500 kg x yr

Isotope
82Se in first instance

 150Nd, 48Ca under study

Background (2xFWHM 
around Qββ)

7 events (Bgrd model 
based on NEMO3 

experience)

T1/20ν (90%CL) 1026 yr

<mν> 40-80 eV

Pros Cons
Background suppression Efficiency
Topology (“smoking gun”) Large footprint 
Physics mechanism ID*

*Superior sensitivity to alternative 0νββ mechanisms, e.g. with Majoron emission

UCL-HEP, UCL-MSSL, 
Manchester, Imperial, Warwick

(~100 people)

20 modules x 5kg
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SuperNEMO Module design

                                                           
Planar and modular design: 
~ 100 kg of enriched isotopes (20 modules x 5 kg)

1 module:  

Source (~40 mg/cm2)   4 x 2.7 m2

82Se first but almost any isotope possible
150Nd, 48Ca being looked at

Tracking : drift chamber ~2000 cells 
in Geiger mode
Calorimeter: scintillators + PMTs 
         600 PMTs +  scint. blocks
Modules surrounded by water
passive shielding 
         

So
ur

ce
 2

.7
m

Submodule
tracker

Submodule
calorimeter

Submodule
Source and 
calibration

6 m

4 
m

2 m (assembled, ~0.44m between source and calorimeter)

27
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SuperNEMO R&D (2006-2010)
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Calorimeter
FWHM = 4% at 3 MeV

Low Background
Tracker mass production

Ultra-LB detection technology

UK groups: UCL-HEP, UCL-MSSL, Manchester, Imperial 
Decisive UK involvement (50% of effort and budget)
R&D Responsibilities: Tracker (sole responsibility), Calorimeter, Software. 
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SuperNEMO  Demonstrator Construction 
(2010-2013)
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Technology
   Ultimate prove of BG levels
Physics
   Sensitive to K-K claim 

7kg of 82Se
   Bgrd ≤ 0.06 events/yr

The first 0 bgrd experiment
   

7 kg source foil

2000 tracker cells

600 calorimeter channels

Gerda-I sensitivity in 2.5 years - 
6.5×1024 yr (equivalent to 3×1025yr with 76Ge) 

UK groups: UCL-HEP, UCL-MSSL, Manchester, Imperial, Warwick
Decisive UK involvement (40% of Demonstrator effort and budget)
Responsibilities: Entire Tracker, large software effort. 
UK members lead a number of key WPs and provide international 
co-spokesperson (R. Saakyan)
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SuperNEMO timeline and budget (UK)

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Demonstrator
construction  

Installation 
at LSM

Demonstrator Physics Running

K-K claim sensitivity

Construction and exploitation of full SuperNEMO detector

Modular Design
Continuous physics running 
in parallel with construction

£3M*

£10-15M*

*UK contribution FE costs
** UK estimated contribution 
FE costs
(Total costs RG + Project Grant)
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Oxford, Sussex, Leeds, 
Liverpool, Sheffield, QMUL

SNOLAB
Sudbury, Ontario
Canada

SNO+ Liquid Scintillator

• compatible with acrylic, undiluted
• high light yield
• pure (light attenuation length in excess of 20 m at 420 nm)
• low cost
• high flash point 130°C safe
• low toxicity    safe
• smallest scattering of all scintillating solvents investigated
• density r = 0.86 g/cm3

• metal-loading compatible

Thanks to S. Biller for providing SNO+ slides
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SNO+ Double Beta Decay

16

• A liquid scintillator detector has poor energy 
resolution... but HUGE quantities of isotope 
(high statistics) and low backgrounds help 
compensate

• Large, homogeneous liquid detector leads 
to well-defined background model
– fewer types of material near fiducial volume
– meters of self-shielding

• “Source in”/“Source out” capability to test 
backgrounds, improve purification, etc.

• Interesting new technique with a rapid 
timescale that could perhaps be pushed 
even further

• Isotope of choice 150Nd (Qββ = 3.4 
MeV)

• 0.1-0.3% load of natNd in ~800 ton 
of LS
• 150Nd abundance = 5.6%.  0.3%⇒ 135 

kg of 150Nd

Optimisation of Nd loading fraction

• Very stringent radiopurity requirements
• < 10-17 g of U/Th per g of LS - demonstrated 

by Borexino
• < 10-14 g of U/Th per g of Nd - very tough and 

to be demonstrated

Challenges 
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SNO+ Double Beta Decay

Background Model and 0νββ signal. Likelihood fit to observe signal 
distortion 
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2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Pure LS run Nd-loaded liquid 
scintillator running 0νββ

Possible Phase 2
Enriched Nd?

Other isotopes?

Possible run with pure scintillator 
in between (precision solar ν’s)

Solar ν’s
Reactor ν’s

Geo ν’s

SNO+ Timeline and budget (UK)

See talk by S. Biller for SNO+ non-DBD physics

Old News:
Alpha-4 rated in last Prioritisation Exercise
Bridging funds provided by STFC until end of 2012
New News:
Modest PRD submitted for calibration system upgrade (~£58K).
Continued project support is entirely exploitation (travel, postdocs & 
academic time), so no further major requests are needed from PPRP.
Following positive SoI feedback exploitation support will be requested via the 
consolidated grants. 
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GERDA - 76Ge

Phase I :18 kg of 86% enriched detectors  
Phase 2 : 40 kg of enriched detectors

 High Efficiency
FWHM = 4 keV

Phase-I running starts this year!

Background goal: b = 0.01 cnts/(kg keV yr)
Recent result: b = 0.06 cnts/(kg keV yr)

Future ambitious goal: b = 0.001 cnts/(kg keV yr)

Eventually 1t joined GERDA and Majorana

 Enriched “naked” Ge diodes in LAr

CUORE - 130Te
 TeO2 bolometers. 130Te abundance 34%
High Efficiency
FWHM = 5 keV
741 kg of TeO2 crystals ⇒ 200 kg 130Te

Background goal: b = 0.01 cnts/(kg keV yr)
Background with some crystals: b ~ 0.06 cnts/(kg keV yr)

Future ambitious goal: b = 0.001 cnts/(kg keV yr)

CUORE0 (1 out of 19 towers) starts 2012
Start-up of the rest ~2013-2014
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EXO200 - 136Xe
Muon track in EXO-200 (Dec 2010)

C
at

ho
de

One of the two TPC modules

U and V wires
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Technique: LXe - ionisation + scintillation
200 kg of LXe enriched to 80% of 136Xe
Expected FWHM at Qββ = 3.8% 

Expected b = 6.25×10-4 cnts/(kg keV yr) ⇒ 20 events/yr around  Qββ 

Engineering run at WIPP - December 2010

Started running with enriched Xe - spring 2011. Performance numbers 
to be released soon.

Ba+ tagging R&D under way. 

Study of ≥ 1t option underway

KamLAND-Zen 
136Xe
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Ton-experiment, 10 meV and other speculations
• O(100kg) generation will reach FOM ~ 4×1026 yr 

by 2018-2020. <mv> = 50-100 meV

• To exclude IH, i.e. to get 10-20 meV, we need 
FOM = ~1028 yr. 

• Example: 76Ge (GERDA-Majorana) even with 
ambitious b = 0.001 cnts/(kg keV yr) one needs 
30 tons (!) of enriched (!!) 76Ge measured over 
5yr! Similar for other projects.

• Thus for ≥ 1ton stage we have to find a 
“background-free” solution

• Example:150kg x 5 yrs of 48Ca, if  no 
background and ε~40% , gives required FOM 
=1028 yr.

– NEMO3 had no background in this region 
after 8 years of running!

– But we need to learn how to enrich 48Ca 
(0.19% nat. abundance)

21
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222Rn poses serious challenge
(How to control ~1atom/N×m3 
contamination?)
Future may belong to “Big Three”

to break away from 222Rn progeny

48Ca
4.27 MeV

96Zr
3.4 MeV

150Nd
3.4 MeV

214Bi
3.27 MeV

Future “Ton” experiments

T1/2
0ν ∝ M × t

mν ∝ M × t( )1/4

May not need 1t to reach 10-20 meV 
if background free
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The Roadmap
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2011 2020
Measurements with several isotopes. Possibility to disentangle 
LNV physics mechanism (almost background free with S-NEMO).
Possibility to access Majorana CP phases.
 

2011 2020

Understanding backgrounds and limiting factors (Radon?)
with O(100kg) experiments 
Isotope enrichment technology.  
 

“Background-free”
detector technology 
and isotope(s) choice.

“Ton” detector
construction

2015

2015

Scenario 1

Scenario 2

“Ton” Experiment must have the sensitivity
to establish or exclude the IH
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Message to take home

• 0νββ is a high risk high return endeavour but  (£/science) is 
among the best
–  Only way to answer questions on Full Lepton Number violation and 

nature and mechanism behind neutrino mass
• UK has a healthy 0νββ programme

–  Leadership role in SuperNEMO
–  Crucial player in SNO+ through previous UK investment

• Both experiments are competitive
–  KK-claim by 2015, ~50 meV by 2020

• And unique
–  Clear background model ⇒ main input for future “Ton” background 

free experiment
–  Unlike most competitors can measure many (almost any?) isotopes, 

including the “Big Three” ⇒ a likely choice for future 10 meV project.

23



NON-DBD Physics 
with SNO+ 

Steve Biller (Oxford)



        Physics with Liquid Scintillator

o“Invisible” modes of nucleon decay
      ® unique sensitivity with initial water data

oNeutrinoless double beta decay
    ® various isotopes possible
oLow energy solar neutrinos 
    ® pep, CNO, 8B and potentially 7Be & pp

oGeo-neutrinos  ®  unmatched

o240 km baseline reactor neutrino oscillation
® Δm2 resolution potentially better than KamLAND
oSupernova neutrinos ®  major player
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 pep signal 
( 4000 events/yr)

CNO Signal

After 3 years: ~5% uncertainty

After 3 years: ~8% uncertainty

40K background
Can be constrained by peak

210Bi background
Can be inferred from 210Po peak

3600 pep events/(kton·year), for electron recoils >0.8 MeV

SNOLAB depth of 6000 mwe gives a muon flux 800 times less than 
KamLAND and virtually eliminates background from 11C, making SNO+ 
uniquely sensitive for a precision measurement.



Improved solar spectral measurements and more detailed modeling 
yields an improved determination of solar photospheric composition 
that is ~25% lower in metallicity than values inferred over a decade ago

                              (Asplund et al., 2005 & 2009)

CNO neutrinos:



Improved solar spectral measurements and more detailed modeling 
yields an improved determination of solar photospheric composition 
that is ~25% lower in metallicity than values inferred over a decade ago

                              (Asplund et al., 2005 & 2009)

CNO neutrinos:

Contradiction with
Helioseismology !

Serenelli et al., 2009



Pena-Garay and Serenelli, arXiv:0811.2424v1 (2008)



Observing change in νe survival probability 
over the MSW transition region probes the 
nature of the neutrino-matter interaction

Possible New Physics Includes:
•Sterile neutrino admixtures
•Neutrino Decay
•Mass Varying Neutrinos
•Non-Standard Interactions

pep neutrinos:



Gallium subtracted
      8B and 7Be

Borexino
    7Be

  Chlorine 
subtracted 8B 

SNO  8B

Allowed NSI Solution

Standard LMA Solution

Friedland, Lunardini and Peña-Gara, 2004



Gallium subtracted
      8B and 7Be

Borexino
    7Be

  Chlorine 
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 pepAllowed NSI Solution
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Friedland, Lunardini and Peña-Gara, 2004



An Odd Mixture of 3 !!



An Odd Mixture of 3 !!

Need precision measurements of all mixing angles.
Solar ν‘s currently the ONLY practical way of improving θ12 



SNO+ will do better 
for low energy 8B

Better measurement
of 7Be Possibly 1st real-time 

measurement of pp

pp
85Kr

14C



Lingering Issues
1. Solar Composition Problem
      genuine mystery in need of resolution !
        also want better understanding of CNO cycle

2. Nature of MSW Transition
      critical probe of neutrino/matter interactions
        numerous alternative models tested
        current data looks intriguing
3. Improve Precision on θ12
      test Tri-Bi-Maximal scenarios

4. Check Fundamental Processes
        testing basic understanding is what we do!



SNO+: First Data in 2012
Rough Order or Running:

H2O ~ couple months

Pure Scintillator ~ several months

Nd-loaded Scintillator ~ few years

Pure Scintillator ~ few years

nucleon
decay

    initial
solar study

Phase I
   ββ

 detailed
solar study

live for supernova running
 reactor neutrinos
    geo-neutrinos   

Phase II ββ? Other ? Follow-on Phase ~ ?
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BACKUP



• Safety tunnel construction start - Sep 2009

• Safety tunnel, end of civil construction - 2012
• Detailed study of LSM extension (ULISSE) - 2010

• Deadline for final decision/money commitment - 2012

• Excavation of new Lab completed - 2013

• Outfitting completed, Lab ready to host experiments - 2014 

Schedule

Minimal scenario: 45,000m3 (100m long), 12M€ excavation + 3M€  outfitting

2d ULISSE workshop in October’09. 11 LOIs received.  
37

LSM Extension


