RICAPOT Roma International Conference on Astro-Particle physics

Summary comments

RICAP07 Roma, 22 June 2007 Tom Gaisser

Organization

- Conference
 - Gamma-ray astronomy June 20
 - Air shower experiments June 21
 - Neutrino astronomy June 22
- Themes
 - Multi-messenger astronomy
 - Origin of Cosmic rays
- Organization of this summary talk
 - Detector calibration
 - Galactic sources
 - Extra-galactic sources
 - Cosmology
 - Sociology

Calibration

LAT calibration approach

- LAT is a complicated instrument, requiring very good calibration to provide the energy, direction and timing reconstruction
- The approach is to avoid a full LAT beam calibration, but rather run the beam tests on the LAT parts and combine the results in the comprehensive whole LAT Monte Carlo simulations (based on Geant 4). This approach requires high confidence in Monte Carlo simulations:
 - Separate parts of LAT have been tested on the different beams (SLAC, CERN, DESY, GSE) several times starting in 1997
 - Single-tower LAT prototype was flown on a balloon in 2001 to verify the design and data analysis approach and to perform background measurements
 - LAT Collaboration ran detailed beam tests at CERN and GSI in the summer of 2006 with 2-tower LAT prototype (Calibration Unit = CU) to verify the simulations. We are still in the process of tuning the MC to agree with the beam test data

Crab Nebula (test pattern)

١

January 2007 three-telescope data wobble 76° elevation 28.1 σ

VERITAS - Hanna

RICAP07 Roma, 22 June 2007

The Contents of the LAT Data Challenge Sky

Bright variable	204	Milky Way itself	1
AGN		Pulsars	414
Faint Steady AGN	900	Plerions	7
GRB	134 (64 GBM triggers)	SNR	11
		XRB	5
GRB Afterglow	9	OB associations	4
РВН	1	Small molecular clouds (40)	40
Galaxy clusters	4	Dark matter (~2)	~2
Galaxies	5	'Other 3EG' (120)	120
Extragalactic diffuse	1	Sun (1 flare)	1 flare
		Moon (1)	1

Alexander Moiseev

RICAP-07 Rome June 20, 2007

SeaTop? For calibration only

Calibration:

- angular offset
- efficiency
- angular resolution
- absolute position

KMSNeT

Three stations at 20 m distances with 16 m2 scintillators each

June 2007

Calibration of IceCube with tagged single μ

Single Station – InIce Coincidences

Single station rate for 16 station array: ~ 1.2 Hz

Providing tagged muons to test the detector performance and InIce reconstructions i.e.:

- Detector timing
- Inlce direction reconstruction.
- Measurement of muon background.

Tank Calibration (Haverah Park, Auger, IceTop)

 Vertical muons as "calibration light source" for tanks.

 Measurement of the tank charge spectra with special calibration runs.

 Determination of Full Spectrum Muon Peak.

 1 Vertical Equivalent Muon (VEM) corresponds to ~ 95% of full spectrum peak charge.

Tilo Waldenmaier

Photoelectrons

June 21, 2007

Missing energy (v & μ) calculation introduces undertainty in FD energy calibration

Calibration beam for v telescopes: Atmospheric neutrinos

Atmospheric v in IC-9

Zenith angle distribution

First look at data, no position alignment used

Galactic sources

RICAP07 Roma, 22 June 2007 Tom Gaisser

The Cygnus Region

- MGRO J2019+37: 10.9σ (previously reported ApJ Lett v658 L33)
 - Extended source $1.1^{\circ} \pm 0.5^{\circ}$ (top hat dia.)
 - Possible Counterparts
 - GeV J2020+3658, PWN G75.2+0.1
- MGRO J2031+41: 6.90 (5.00 post-trials)
 - Possible Counterparts:
 - 3EG J2033+4118, GEV J2035+4214
 - TEV J2032+413 (¹/₃ of Milagro flux)
 - 3.0° \pm 0.9° (top hat dia.)
- C1 J2044+36: 5.5σ pre-trials
 - no counterparts
 - < 2.0°
- C2 J2031+33: 5.3σ pre-trials
 - no counterparts
 - possible extension of MGRO J2019+37
 - possible fluctuation of MGRO J2019 tail & diffuse emission & background
- TeV Diffuse emission ~3x predictions
 - Cosmic Ray sources?
 - Unresolved gamma-ray sources?

Gus Sinnis RICAP, Rome June 2007

The IBIS: Central Radiant, no Diffuse Ridge Emission

High-energy sources appear on all time-scales

Supernova remnant shells resolved in VHE

Istituto di Astrofisica Spaziale Fisica Cosmica - Nora

- Unambiguous proof that TeV particle acceleration takes place in SNR shocks
- Young supernova remnants \rightarrow particles still confined inside sources

, Page 20

Leptonic vs. hadronic (RX J1713-3946)

Particle acceleration to beyond 100 TeV

Vela Junior: morphology (and more)

What if RXJ 1713 is hadronic?

Figure 3: IC-9 effective area to a flux of $\nu_{\mu} + \bar{\nu}_{\mu}$, averaged over different declination ranges.

Convolve Flux with effective area for km^3 in the North:

~ 2 ν / year after accounting for kinematics and oscillations

RICAP07 Roma, 22 June 2007 Tom Gaisser

Spectra at Modified Shocks

Amato and PB (2005)

Very Flat Spectra at high energy

Pasquale Blasi: most energy at Emax --How to get smooth, power-law spectrum?

CR Iron spectrum from Direct Cherenkov

HESS collaboration, Phys Rev D 27, 2007

KASCADE: Energy spectra for elemental groups

Hard Helium spectrum ?

RICAP07 Roma, 22 June 2007 Tom Gaisser

ATIC, John Wefel

Approaching the "knee"

- The proton spectrum follows a power law without much change up to ~ 100 TeV.
- He spectrum seems harder than the proton spectrum.
- Compared to lower energy data, there seems to be an increase in the abundance of Helium nuclei relative to protons.
- Future flights will extend the CREAM energy reach to higher energies to distinguish hadronic interaction models such as QGSJET and SIBYLL used for ground based data.

Solar flare

Extra-galactic sources

Tom Gaisser

MAGIC: Extragalactic Sources

Markarian 501: Time lag

- Evident 4±1 min Time Lag between $\Phi_{<250GeV}$ and $\Phi_{>1.2TeV}$
- May be explained by the particle acceleration process
- BUT, if photons at diff. E emitted simultaneously:

Lorentz invariance violation?

$$\Delta T \sim 4 \text{ min}, \Delta E \sim 1 \text{ TeV}$$

 \Rightarrow E_{scale} ~ 10^{17÷18} GeV

Absorption of gamma rays in the universe

Pair Creation; $\gamma + \gamma \rightarrow e^+ + e^-$

Very Soft energy spectrum

the attenuation by pair creation or nature of SSC mechanism

MAGIC+HESS → Z < 0.42 D.Mazin and F.Goebel

GRB Observations

- 22 GRBs follow-up:
 2 even while during the prompt emission
- UL ≈ 80 GeV
- Analysis results sent via GCN asap!

Need a closer GRB

seconds since BAT trigger

No TeV GRBs yet

AGILE NORMAL GRB SEARCH MODE

RICAP07 Roma, 22 June 2007

Energy spectrum from SD E[eV] 2×1019 3×1019 2×10^{20} 3×10¹⁸ **10**²⁰ **10**¹⁹ lg(J/(m⁻² sr⁻¹ s⁻¹ eV⁻¹)) -31 4128 2450 Exp Obs 1631 -32 >10^{19.6} 132 +/- 9 51 1185 761 560 > 10²⁰ 367 30 +/- 2.5 2 -33 284 178 125 -34 54 25 -35 **Calibration unc. 18%** -36 **•FD** syst. unc. 24% 1 -37 5165 km² sr yr ~ 0.8 full Auger year 18.6 18.8 19.2 19.8 20 20.2 20.4 18.4 19 19.6 19.4 lg(E/eV)

~10⁶ km² sr from space

The apparatus required for space-based UHECP observation

Roma / June 21, 2007

The apparatus required for space-based UHECP observation

Region of sky observable by Neutrino Telescopes

John Carr

ANTARES (43° North)

AMANDA (South Pole)

GZK neutrinos as probe of evolution of UHE sources

The cosmogenic neutrino spectra generated by the two extreme models of the injection spectra of UHECR protons in case of isotropic homogeneous distribution of the cosmic ray sources. The big difference in case of `MBR only' interactions is due to the flat injection spectrum and the cosmological evolution of the sources. The interaction rate is dominated by IRB generated neutrinos in the case of steep injection spectrum. MBR neutrinos dominate the high energy end, especially in the flat injection spectrum case.

Radio: In-Progress Efforts (D. Besson)

Expt	Threshold	N(element)	Comment
RICE	100 PeV	20 (dipole)	1999-, small
ANITA	10 ⁴ PeV	36 (dual-pol horn)	06-07 flite, systematix?
nuMoon, GLUE, FORTE, PRO	1000 PeV	1 BIG dish	Livetime?
AURA	100 PeV	2 cluster x 4/cluster	Initial data- analysis
SALSA	100 PeV	14000	Salt props?
ARIANNA (Ross Ice Shelf)	10 PeV	10000 horn	Start-up \$ - 12/06 msrmnt
LOPES/LOFAR/ CODALEMA	100 PeV	~10-20	Large RFI backgrounds

Cosmology

RICAP07 Roma, 22 June 2007 Tom Gaisser

Lars Bergstrom

Example of more "conventional" dark matter model Spin-O Dark Matter Candidate: Inert Higgs Doublet Model

Introduce extra Higgs doublet H_2 , impose discrete symmetry $H_2 \rightarrow -H_2$ similar to R-parity in SUSY (Deshpande and Ma, 1978; Barbieri, Hall, Rychkov 2006)

$$\begin{split} V &= \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \lambda_1 |H_1|^4 + \lambda_2 |H_2|^4 \\ &+ \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1^{\dagger} H_2|^2 + \lambda_5 Re \Big[(H_1^{\dagger} H_2)^2 \Big] \end{split}$$

 \Rightarrow Ordinary Higgs can be as heavy as 500 GeV without violation of electroweak precision tests

 \Rightarrow 40 – 70 GeV inert Higgs gives correct dark matter density

 \Rightarrow Coannihilations with pseudoscalar A are important

 \Rightarrow Interesting phenomenology: Tree-level annihilations are very weak in the halo; loopinduced $\gamma\gamma$ and $Z\gamma$ processes dominate!

 \Rightarrow The perfect candidate for detection in GLAST!

appear, 2007

Can be searched for at LHC through

 $pp \to W^* \to HA \text{ or } HS$ $pp \to Z^*(\gamma^*) \to SA \text{ or } H^+H^-$

Unique Feature Of AMS

Combining searches in different channels could give (much) higher sensitivity to SUSY DM signals

Sociology

Number of experimental groups at RICAP07 with > N members

RICAP07 Roma, 22 June 2007 **Tom Gaisser**

Conclusion

Thanks to Tonino Capone and his colleagues

Tom Gaisser

Expectations for rates of atmospheric v

- Assumptions:
 - Muon neutrinos: full efficiency for μ range > 0.5 km (E_v > 150 GeV)
 - $(E_v 100 100)$ $= Electron neutrinos: = Efficiency for v_e = Efficiency for v_e = E_v < TeV$
- Note advantage of lowering E_{th} for v_e
 - ~800 v_e interactions per km³ yr

RICAP07 Roma, 22 June 2007