Ultra High Energy Cosmic Ray Spectrum Measured by HiRes Experiment

> Zhen Cao IHEP, Beijing, China

Roma International Conference on Astroparticle Physics, 2007

Collaborators

R.U. Abbasi^a, T. Abu-Zayyad^a, J.F. Amann^b, G. Archbold^a, R. Atkins^a, J.A. Bellido^c,
K. Belov^a, J.W. Belz^d, S. BenZvi^h, D.R. Bergman^e, G.W. Burt^a, Z. Cao^{i,a}, R.W. Clay^b, B.M. Connolly^h, B.R. Dawson^b, W. Deng^a, Y. Fedorova^a, J. Findlay^a, C.B. Finley h, W.F. Hanlon^a, C.M. Hoffman^b, M.H. Holzscheiter^b, G.A. Hughes^e, P. H'untemeyer^a, C.C.H. Jui^a, K. Kim^a, M.A. Kirn^d, E.C. Loh^a, M.M. Maestas^a, N. Manago^f, L.J. Marek^b, K. Martens^a, J.A.J. Matthews^g, J.N. Matthews^a, A. O'Neill^h, C.A. Painter^b, L. Perera^e, K. Reil^a, R. Riehle^a, M.D. Roberts^a, M. Sasaki^f, S.R. Schnetzer^e, K.M. Simpson^b, G. Sinnis^b, J.D. Smith^a, R. Snow^a, P. Sokolsky^a, C. Song^h, R.W. Springer^a, B.T. Stokes^a, J.R. Thomas^a, S.B. Thomas^a, G.B. Thomson^e, D. Tupa^b, S. Westerhoff^h, L.R. Wiencke^a, A. Zech^e, B.K. Zhangⁱ, Y. Zhangⁱ

^aUniversity of Utah, Department of Physics and High Energy Astrophysics Institute, Salt Lake City, Utah, USA ^bLos Alamos National Laboratory. Los Alamos, NM, USA ^cUniversity of Adelaide, Department of Physics, Adelaide, Australia ^dUniversity of Montana, Department of Physics and Astronomy, Missoula. Montana, USA ^eRutgers-The State University of New Jersey, Department of Physics and Astronomy, Piscataway, New Jersey, USA ^fUniversity of Tokyo, Institute for Cosmic Ray Research, Kashiwa, Japan ^gUniversity of New Mexico, Department of Physics and Astronomy, Albuquerque, New Mexico, USA ^hColumbia University. Department of Physics and Nevis Laboratory, New York, New York, USA ⁱInstitute of High Energy Physics,

Beijing, China

Outline

- Introduction
- Detector Calibration
- Detector Simulation
- Detector Resolution
- Aperture estimation
- Energy Spectrum
- Uncertainty study
- Conclusion

Introduction

HiRes

- Each HiRes detector unit ("*mirror*") consists of:
 - spherical mirror w/
 3.72m² unobstructed
 collection area
 - 16x16 array (hexagonally close-packed) of PMT pixels each viewing 1° cone of sky

HiRes

- HiRes-1 site re-used HiRes prototype PMT and electronics
 - began operation in June, 1997
- HiRes-2 site uses new
 FADC system developed at Columbia Univ.
 - Stereo observation began Dec 1999.

HiRes-1

HiRes-2

Typical HiRes Event

- $\sim 2 \times 10^9$ eV events seen in 1999
- 1/500,000 speed playback of "movie"

An example event

Stereoscopic Operational Facts

- 719 operational nights: $T=1.3\times10^7$ sec effective duty cycle: 6.5%
- # of reconstructed events : 16473 after all cuts:
- # of events in the spectrum analysis: 1256
- # of events below $E_{th} = 3 \times 10^{18} \text{ eV}$: 1033

Calibration

1.Roving Xenon Flasher
2.YAG laser monitoring (daily gain database)
3.End-to-end using roving N₂ laser
4.Hourly atmospheric transmission
5. Mirror reflectivity (m,λ)

Gains are calibrated using roving xenon flasher (red lines) & monitored using YAG laser+fiberbundle

"end-to-end" absolute Calibration using N₂ laser@4km

Average energy scale of each mirror (HR2)

Aerosol transmission

 Entire data taking period

Detector Simulation and Comparison with Data

1.Corsika shower driven simulation2.Light production and propagation3.Detector response and trigger4.Fully reconstructed

MC vs. Data: Rp distribution (proton)

MC vs. Data: zenith angle distribution

MC vs. Data: Xmax distribution Data seems to favor proton

Detector Resolution

Geometrical reconstruction
 Shower development

Detector Aperture Estimate

Energy distribution & HiRes Aperture

log(E/eV)

Geometrical constrained measurement

Stable and well defined HiRes aperture

MC test on geo-constraints

Energy Spectrum

Cuts

16473 reconstructed events in total

• Good Weather: VAOD<0.1 &

correction on bin signal<2) (12730)

- Fitting Quality: profiles with both rising and falling (6394)
- **Cerenkov contamination**: < 30% (6016)
- Threshold@10^{18.2}eV: stabilizing detecting efficiency (3300)
- **Minimizing atmospheric effects**: geometrical constraints (1844)
- **Clouds free**: (1256)

/home/caozh/HR2/exotic/Egt100EeV/Egt100EeV_20041013.dst

Systematical Uncertainties 1.Fluorescence yield 2.Aerosols 3.Spectra of shower charged particles 4.geo-constraint

Aperture is essentially same after geometric constraint

The largest uncertainty is due to spectra of shower electrons

Aerosols do not affect the spectrum as expected geo-constr. does, but very small effect

Conclusion

- HiRes Exp. 1999-2006 operation: 7% duty cycle
- Total number of events: 1256 (E>10^{18.2}eV)
- Stable aperture: $10^4 \text{ km}^2 \text{sr}$ @ 10^{20}eV
- Spectrum: dip@few EeV is well measured with CL=99.7%

& GZK cut-off is observed with 4.3σ

Status: to be **Published soon**

 Systematic Uncertainty: 11% in energy Aperture change by 2 with # of events as well, All spectrum features remain the same <10% in normalization of the flux

