

Cosmic Ray Physics with IceCube

Tilo Waldenmaier for the IceCube Collaboration

Tilo Waldenmaier

RICAP Conference Rome

Outline

The IceCube Detector

- Current Status
- Air Shower Reconstruction
 - Core & angular resolution
 - Lateral distribution function
 - Energy conversion
- IceTop-InIce Coincidences
 - Single Station coincidences
 - How to study composition

Summary & Outlook

The IceCube Detector

► IceTop:

- 80 Stations with 2 Tanks.
- 2 DOMs (HG and LG) per Ice-Cherenkov-Tank.
- Tank spacing: 10 m
- Station spacing: 125 m
- ► Inlce:
 - 80 Strings with 60 DOMs.
 - Depth: 1450 2450 m
 - Vertical spacing: ~17 m

Expected completion in 2010/11

Current Status (2007)

22 Inlce Strings26 IceTop Stations

Data taking with new detector components started this month!

Sunshades

Station 46

Tilo Waldenmaier

RICAP Conference Rome

June 21, 2007

Station 56

IceTop Station

Tilo Waldenmaier

RICAP Conference Rome

Ice-Cherenkov Tanks

Tilo Waldenmaier

RICAP Conference Rome

Tank Calibration

- Vertical muons as "calibration light source" for tanks.
- Measurement of the tank charge spectra with special calibration runs.
- Determination of Full Spectrum Muon Peak.
- I Vertical Equivalent Muon (VEM) corresponds to ~ 95% of full spectrum peak charge.

Tilo Waldenmaier

Photoelectrons

Air Shower Reconstruction

Tilo Waldenmaier

RICAP Conference Rome

June 21, 2007

2

Angular & Core Resolution

Sub-Array Analysis

 Dividing array into two nearly identical subarrays of tanks A and B.

 Comparision of individual reconstructions.

Tilo Waldenmaier

RICAP Conference Rome

Angular & Core Resolution

Sub-Array Analysis

Tilo Waldenmaier

RICAP Conference Rome

Lateral Distribution

DLP-Function

Signal fluctuations

- Lateral signal distribution in the tanks parametrized by Double Logarithmic Parabola (DLP).
- Log-Likelihood fit assuming log-normally distributed signal fluctuations.

Energy Estimation

CORSIKA Simulation:

- Signal (S₁₀₀) at R₀=100 m is measure for the primary energy.
- CORSIKA simulations for different primary energies E₀ and zenith angles θ.

Conversion formula:

$$\log(E_0) = p_0 + p_1 sec(\theta)$$

$$-\sqrt{p_2 + p_3 sec(\theta) - p_4 \log(S_{100})}$$

Parameters p_i follow from fit to simulation data.

$$\rightarrow$$
 ICRC Talk of S. Klepser

Raw Energy Spectrum

Not yet corrected for acceptance and detector response!

Already reasonable values for absolute flux and spectral index.

Single Station – InIce Coincidences

Single station rate for 16 station array: ~ 1.2 Hz

Providing tagged muons to test the detector performance and InIce reconstructions i.e.:

- Detector timing
- Inlce direction reconstruction.
- Measurement of muon background.

Single Station – InIce Coincidences

Detector timing:

- Muon velocity from distances and time differences between station and InIce DOMs.
- Spread reflects timing, geometry and methodical uncertainties.
- → Timing better than 12 ns. (Measurement with flashers: 3 ns)

Direction reconstruction:

- Muon direction given by position of station and Center Of Gravity of InIce Signals.
 - Comparison of InIce reconstruction to "known" muon direction.

IceTop – InIce Coincidences

Tilo Waldenmaier

RICAP Conference Rome

IceTop – InIce Coincidences

How to study composition with IceCube

Reconstruction parameters:

 IceTop: S100 Average signal at 100 m perp. distance to shower core.

Inlce: K50

Average muon bundle light yield at 50 m perp. distance to shower axis at certain slant depth.

Transformation into (A,E)plane or 2D de-convolution enable composition study.

Tilo Waldenmaier

RICAP Conference Rome

Summary & Outlook

IceTop reconstruction works and improves steadily.

- Energy Spectrum still needs to be corrected for acceptance and detector response.
- Single station InIce coincidences for detector and reconstruction checks.
- IceTop InIce coincidences allow a study of the cosmic ray composition.
- Looking forward to analyze 2007 data.

and the second states