The Milagro Observatory: Recent Results & Future Plans

Gus Sinnis Los Alamos National Laboratory for the Milagro Collaboration

- Water Cherenkov Detector
- 2600m asl ٠

NATIONAL LABORATORY

EST. 1943

- 898 detectors
 - 450(t)/273(b) in pond
 - 175 water tanks
- 4000 m² (pond) / 4.0x10⁴ m² (phys. area) ٠
- 2-12 TeV median energy (analysis dependent) •
- 1700 Hz trigger rate ٠
- 0.5°-1.4° resolution (1.1° average) •
- 95% background rejection (at 50% gamma eff.) ٠

e

RICAP, Rome June 2007

The Milagro Reservoir

7 years of operation: 2000 - 20073 years with outrigger array~320 billion events collected

Background Rejection in Milagro

Crab Nebula & C3 J0634+17 (Geminga)

- Crab detected at 15.0 σ
- Fit position consistent with true position (within statistical error 0.1°)
- Fit width of 0.7° consistent with Monte Carlo expectations of angular resolution (sigma of 2-D Gaussian)

- C3 J0634+17 position consistent with Geminga location
- 4.7 σ at location of Geminga (5.1 σ at peak)
- Diameter $2.8^{\circ} \pm 0.8^{\circ}$

MGRO J1908+06 & C4 J2226+60

- Statistical Sig. 8.3 (
- Flux @ 20 TeV ~800 mCrab
- Diameter < 2.6°
- Possible Counterparts
 - GeV J1907+0557
 - SNR G40.5-0.5
 - SS 433
 - Tibet Location of Interest (4.5σ)

C4 J2226+60

- Statistical Sig. 5.0 (pre-trial
 - 6.3σ in 3° x 3° bin
- Appears elongated
- Diameter: 3.4° ± 1.7°
- Possible Counterparts
 - GeV J2227+6106, 3EG J2227+6122
 - SNR G106.6+2.9, Boomerang PWN

The Cygnus Region

- MGRO J2019+37: 10.9σ (previously reported ApJ Lett v658 L33)
 - Extended source $1.1^{\circ} \pm 0.5^{\circ}$ (top hat dia.)
 - Possible Counterparts
 - GeV J2020+3658, PWN G75.2+0.1
- MGRO J2031+41: 6.90 (5.00 post-trials)
 - Possible Counterparts:
 - 3EG J2033+4118, GEV J2035+4214
 - TEV J2032+413 (¹/₃ of Milagro flux)
 - 3.0° \pm 0.9° (top hat dia.)
- C1 J2044+36: 5.5σ pre-trials
 - no counterparts
 - < 2.0°
- C2 J2031+33: 5.3σ pre-trials
 - no counterparts
 - possible extension of MGRO J2019+37
 - possible fluctuation of MGRO J2019 tail & diffuse emission & background
- TeV Diffuse emission ~3x predictions
 - Cosmic Ray sources?
 - Unresolved gamma-ray sources?

Galactic Plane Survey Summary

als	Object	² Location (I, b)	Counterpart ?	Pre(Post)- Trial	Flux @20 TeV (x10 ⁻¹⁵) (/TeV/cm ² /s)
ז post-tria				Significance	
	Crab	184.5, -5.7		15.0σ (14.3σ)	10.9±1.2 _{stat}
	MGRO J2019+37	75.0, 0.2	PWN G75.2+0.1 GeV J2020+3658	10.4σ (9.3σ)	8.7±1.4 _{stat}
>2	MGRO J1908+06	40.4, -1.0	GeV J1907+0557 SNR G40.5-0.5	8.3σ (6.9σ)	8.8±2.4 _{stat}
	MGRO J2031+41	80.3, 1.1	GeV J2035+4214	6.6σ (4.9σ)	9.8±2.9 _{stat}
	C1 J2044+36	77.5, -3.9	?	5.8σ (3.9σ)	2.8±0.6 _{stat}
	C2 J2031+33	76.1, -1.7	?	5.1σ (2.8σ)	3.4±0.8 _{stat}
	C3 J0634+17	195.7, 4.1	Geminga	5.1σ (2.8σ)	6.5±1.5 _{stat}
	C4 J2226+60	105.8, 2.0	GeV J2227+6106 Boomerang PWN SNR G106.6+2.9	5.0σ (2.7σ)	3.5±1.2 _{stat}

EST. 1943

Mrk 421 TeV/X-Ray Correlation

HAWC: High Altitude Water Cherenkov

- Build pond at extreme altitude (Tibet 4300m, Mexico 4100m)
- Incorporate new design
 - Optical isolation between PMTs
 - Larger PMT spacing
 - Single PMT layer (4m deep)
- Reuse Milagro PMTs and electronics
- 22,500 m² sensitive area

~\$6M for complete detector

~10-15x sensitivity of Milagro

Crab Nebula in 1 day (4 hours) [Milagro 3-4 months]

4x Crab flux in 15 minutes

GRBs to z < 0.8 (now 0.4)

HAWC Effective Area v. Energy

Gamma/Hadron Separation

EST. 1943

RICAP, Rome June 2007

Background Rejection in HAWC

low energy gamma events

Sensitivity vs. Source Size

Large, low surface brightness sources require large fov and large observation time to detect.

EAS arrays obtain >1000 hrs/yr observation for every source.

Large fov (2 sr):

Entire source & background simultaneously observable

Background well characterized

HAWC Sky Survey

Conclusion

- Enormous progress has been made in the past decade in TeV survey technology
 - Discovery of diffuse TeV gamma rays from the Galactic plane
 - Discovery of diffuse TeV gamma rays from the Cygnus region
 - Discovery of 3 Galactic TeV sources
 - Likely detection of Geminga at 10-20 TeV
 - Strong correlation between TeV sources and GeV catalog (and PWN)
- HAWC can attain high sensitivity over an entire hemisphere
 - ~15 times the sensitivity of Milagro
 - ~5 sigma/ \sqrt{day} on the Crab
 - 30 mCrab sensitivity over hemisphere
 - Unsurpassed sensitivity to extended sources
 - Study Galactic diffuse emission
 - Unique TeV transient detector
 - (4*x* Crab in 15 minutes)

Galactic Longitude Flux Profile

- Flux calculations assume a Crab spectrum (-2.62)
- Milagro measurements at 12 TeV (first detection above 20 GeV)
- There is an excess of diffuse TeV gamma rays from the Galactic plane
 - Additional unresolved sources?
 - Cosmic-ray acceleration sites?

Galactic Latitude Flux Profiles

GRB Sensitivity

Fluence Sensitivity to 10s GRB.

Both Milagro and HAWC can "self trigger" and generate alerts in real time. GRB rate in FOV ~100 GRB/year (BATSE rate)

Background Rejection

Circles are EM particles > 1 GeV Circles are μ 's & hadrons > 1 GeV Circles are 30m radius (~area of Milagro μ layer)

