

KM3NeT a next generation neutrino telescope

E. de Wolf Nikhef/University of Amsterdam

What is KM3NeT?

- Aftuture de etecep sea a Resa a Resa a so heture
- Anne strenger tipe water water
- Ecutring telescoperudy for a

Deep Sea Facility in the Mediterranean for Neutrino Astronomy and Associated Sciences

which started February 2006

KM3NeT consortium

38 institutes from:

Cyprus, France, Germany, Greece, Ireland Italy, Malta, The Netherlands, Spain, UK

KM3NeT DS objectives

- Effective volume ≥ 1 km³
- Angular resolution for muons: 0.1^o (for neutrino energies ≥ 10 TeV)
- Energy threshold: few 100 GeV (~100 GeV when pointing)
- Sensitivity to all neutrino flavours,
 CC/NC reactions
- Field of view: close to 4π for high energies

E. de Wolf, Nikhef/UvA

Targeted budget: M€220-250 (ESFRI roadmap)

KM3NeT DS deliverables

- Conceptual Design Report: autumn 2007 (workshop in Amsterdam, November 2007)
- Technical Design Report: spring 2009 a.o.
 - Technical description of major parts
 - QA/QC procedures
 - Optimal site-detector combinations
 - Inventory of resource opportunities

Neutrino astronomy

Antartica

Mediterranean Sea

Simulations

...many parameters...

Simulating various configurations

Usually with Antares environmental parameters

Estimated neutrino effective area

Configuration 1 (1 km³):

127 lines in hexagon100m line spacing25 storeys, 15 m apart3 Antares (10") PMTsper storey

Configuration 2 (1 km³):

225 lines in cuboid grid 95m line spacing 36 storeys, 16.5 m apart 21x3"PMTs per storey

Antares site parameters

Ref. ICRC0865, J. Carr et al Thesis S. Kuch, Erlangen

E. de Wolf, Nikhef/UvA

RICAP07, Rome, 22nd June 2007

Estimated sensitivity to HESS sources

Neutrino energies 1TeV – 1 PeV Muon event rates for 5 years of data taking

		configuration 2		configuration 1	
	Name	$ au_1$ / $ ext{bgr}$	$ au_2$ / bgr	$ au_1'$ / bgr	$ au_2'$ / $ ext{bgr}$
1	Vela X	10.0 (16.0) / 13.0	23.6 (34.8) / 34.0	2.3 (3.3) / 4.2	4.2 (6.1) / 6.8
2	RXJ1713.7	6.4 (11.2) / 23.3	15.8 (25.2) / 61.0	1.6 (2.5) / 14.1	2.8 (4.4) / 22.3
3	RXJ0852.0	6.4 (12.9) / 59.0	15.8 (29.2) / 154.5	1.5 (2.8) / 30.2	2.9 (5.3) / 49.6

Ref. ICRC0865, J. Carr et al

Estimated diffuse flux limit

Configuration 2: 225 strings with lower half sphere multiPMTs

No atmospheric muon background taken into account

No energy reconstruction applied

E. de Wolf, Nikhef/UvA

RICAP07, Rome, 22nd June 2007

Estimated E⁻² flux limit

Configuration 2: 225 lines with lower half sphere mulitPMTs

No atmospheric muon background taken into account

> Muon energy reconstruction perfect

E. de Wolf, Nikhef/UvA

Neutrino energies 1 TeV - 1 PeV

Thesis S. Kuch, Erlangen

RICAP07, Rome, 22nd June 2007

...on the shoulders of....

DUMAND and Baikal what have we learned?

- Dumand: wet mateable connectors are weakest point -> minimize # wet mateable connectors
- Baikal: no junction box -> no wet mateable connectors

AMANDA/IceCube what have we learned?

- Remote operation -> virtual control room
- InIce: high level of mass production of strings (currently 780 OMs on 13 strings per summer)
- IceTop: calibration, veto, CR physics
 - -> SeaTop?

Mediterranean what have we learned?

- **Antares:**
 - Monitoring of position flexible structures
 - All-data-to-shore
 - -> minimize off-shore electronics
- Nemo:
 - Compact deployment
 - -> maximize number of OMs per hour deployment
- Nestor:
 - Telescope-to-shore connection without ROV
 - -> minimize wet-mateable connectors

...use this experience in KM3NeT...

Optical Module

-> number of connectors per photo cathode area minimized

Readout/data transmission

Three options studied

- a la Antares
 - Improved front-end chip
 - new FPGA/CPU
- 1-1 wire/fiber network
 - new front end chip
 - multi-functional FPGA system
- 1-1 photonics based networ
 - front-end chip or pic
 - on-shore timestamp
 - on-shore multi-λ laser
 - reflective optical modulator off sl

-> number of active components off-shore minimized

Ref. ICRC. 0490, P. Kooijman et al

Detection unit

- Rigid or flexible structure
- Both options can work, assess:
 - Reliability
 - #(wet mateable) connectors
 - Production model
 - Distributed versus single assembly site
 - Transport to deployment site
 - Deployment model
 - Dependence on weather conditions
 - #(sub)sea operations: #OM per hour deployment

Production model example

- Configuration:
 - 10000 optical modules
 - 250 detector units
 - 25 calibration units
- 3 years for construction (2010-2013)

~ 5 assembly sites are needed

NIKHEF

10 "lines" /400 OMs per month to be deployed

15 / day

10 / month

1 / month

Deployment of few hundred OMs per month

a la NEMO, but with flexible structures

-> Large number of optical modules per hour deployment

Deployment one step further

Multiple interconnected strings deployed at once?

E. de Wolf, Nikhef/UvA

-> Less wet-mateable connectors

SeaTop?

Lior calibration only

Three stations at 20 m distances with 16 m2 scintillators each

- angular offset
- efficiency
- angular resolution
- absolute position

Associated sciences

- KM3NeT site in ESONET and EMSO
- KM3NeT report:

Opportunities for Long Term Cabled Observatories in the Mediterranean Sea editors I.G. Priede and A.J. Jamieson

Site selection

■ KM3NeT report input for discussion:

Evaluation of existing water, oceanographic, biological and geological data from candidate sites

Site selection

Final choice will depend on

- Depth
- Distance from shore
- Bioluminescence rate
- Sedimentation
- Biofouling
- Sea currents
- Earth quake profile
- Access to on-shore high speed networks
- **—**

KM3NeT phases

- Design study: 2006-2009
 - Technical Design Report
- Preparatory phase: 2008-2011

(proposal submitted)

- Political convergence (site)
- Commitment for construction of funding agencies/ministries
- Governance and legal structure
- System prototype
- Tendering procedures
- Construction phase: 2010-2013
 - Build ≥1 km3 detector

Foreseen KM3NeT profile

Robert-Jan Smits Director, Research DG, European Commission ECRI 2007, Hamburg, June 6, 2007

Life-cycle of a Research Infrastructure

Preparatory	Construction	Operational	Upgrade
Phase	Phase	Phase	
■FP7 ■Member States ■Research centres	Member StatesStructural fundsEIBIndustryFP7	■Member States■Users■Industry■FP7■EIB	Member StatesStructural fundsEIBIndustryFP7

Conclusions of **ECRI 2007**

- 5) To allow for the realization of the 35 projects of the ESFRI roadmap conference underlines in particular the importance of the following issues:
 - a) availability of top talents and researchers
 - b) creation of a dedicated legal structure at European level which includes efficient governance models.
 - c) effective financial management by combining different sources of funding, notably national, EU framework programme, structural funds, EIB, charities etc.
 - d) effective use of e-infrastructures to allow for optimum connections
 - appropriate arrangements for data storage, security and preservation
- 6) The conference felt that special attention should be paid to the international dimension of research infrastructures and called for increased cooperation with Europe's main partners around the world.

Summary

- KM3NeT DS is well on its way
 - Building on experience of existing telescopes
 - CDR workshop in November 2007
- Waiting for a decision on FP7-PP proposal
 - Commitments for construction
 - Governance
 - Site selection
 - System prototype

