The BAIKAL Neutrino Experiment: status, selected physics results, and perspectives

A REAL REAL AND A REAL AND A

Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration (RICAP07, Rome, 2007)

Collaboration

>Institute for Nuclear Research, Moscow, Russia >Irkutsk State University, Russia. > Skobeltsyn Institute of Nuclear Physics MSU, Moscow, Russia. >DESY-Zeuthen, Zeuthen, Germany. >Joint Institute for Nuclear Research, Dubna, Russia. >Nizhny Novgorod State Technical University, Russia. > St.Petersburg State Marine University, Russia. > Kurchatov Institute, Moscow, Russia.

Baikal Neutrino Project

Milestones:

>1983: site / water studies;

R&D: large area PMT, u-water techn.;

physics small setups (exotics search)

- 1991: Proposal for NT200 detector in Lake Baikal submitted
- 1993: NT36 the first underwater array operates
- 1998: NT200 commissioned

2005 - 2006: NT200+ completed and currently is operating

>2006: Activity towards Gigaton Volume Detector in Lake Baikal

KM3NeT (~2014)

NT200+/Baikal-GVD (~2015)

Amanda/IceCube (~2011)

A

1450 m

2 45

© 1990 Tom Van Sant, Inc. / The GeoSphere Project Santa Monica, California

Baikal - Optical Properties

AC9 (trnasmissometer), used by the NEMO group ASP15 (Absorption, Scattering and Phase function meter), used by the BAIKAL group NIM A498 (2003) 231

Ice as a natural deployment platform

lee stable tor 6-8 weeks/year.

- Maintenance & upgrades

– Test & installation of new equipment

Winches used for deployment

d=37cm

Physics Results (selected): NT200 1998-2002

Gigaton Volume Detector in Lake Baikal

- a) NT200+ (10 Mt Detector) intermediate stage to GVD
- b) present and nearest future activities toward GVD

Conclusion

NT200 - Selected Results

Data sample - 1998-2002: 1038 days (Apr.98-Feb.03)

- Low energy phenomena:
- Atmospheric neutrinos
- WIMP Neutrinos

Atmospheric Muon-Neutrinos

With weaker cuts, 1998-2002: 372 events. N_μ(>15GeV)/N_μ(>1GeV)~1/7

 → A higher statistics neutrino sample
 for Point-Source Search.
 MC: 385 ev. Expected (15%BG).

Atmospheric Muon-Neutrinos

Lake Baikal (NT200) & South Pole (Amanda) Complete sky coverage including central parts of Galaxy

WIMP Neutrinos from the Center of the Earth Detection area of NT-200 for vertically up-going muons detection (after all cuts)

WIMP Neutrinos from the Center of the Earth

Data analysis

Livetime – 1038 days (April 1998 – February 2003)

after <mark>after</mark>	Trigger: N _{hit} > 3 Cut 1 all Cuts	 3.45x10 ⁸ 90653 <mark>48</mark>	events detected events selected events selected
	Atm. neutrinos (expectation)	 73.1 56.6	events without oscillations events with oscillations

Atm. muons --- 3.6 events expected (background)

Systematic uncertainties: 24% Within stat. and syst. uncertainties 48 detected events are compatible with the expected background induced by atmospheric neutrinos with oscillations.

90% C.L. upper limit on the excess muon flux

NT200 - Selected Results

Data sample - 1998-2002: 1038 days (Apr.98-Feb.03)

High-energy phenomena:

- Diffuse neutrino flux
 - Neutrinos from GRB
 - Prompt muons and neutrinos
 - Exotic HE muons
- Search for exotic particles:
- Relativistic magnetic monopoles

Search for fast monopoles ($\beta > 0.8$)

$$\begin{split} N_{\gamma}(\lambda) &= n^2 \, (g/e)^2 \, N_{\gamma\mu}(\lambda) = 8300 \, N_{\gamma\mu}(\lambda) \\ g &= 137/2, \ n = 1.33 \\ \sim E_{\mu} &= 10^7 \, GeV \end{split}$$

Event selection criteria:

hit channel multiplicity - $N_{hit} > 35$ ch, upward-going monopole - $\Sigma(z_i-z)(t_i-t)/(\sigma_t\sigma_z) > 0.45$ & $\theta > 100^\circ$

Background - atmospheric muons

Limit on a flux of relativistic monopoles: $\Phi < 4.6 \ 10^{-17} \ cm^{-2} \ sec^{-1} \ sr^{-1}$

90% C.L. upper limit on the flux of fast monopole (1003 livedays)

Diffuse Flux V_e , V_τ , V_μ Limit

Detection Volume vs. Energy

No events observed (24% system. err.) \rightarrow 2.5 evt exp.

The 90% C.L. "all flavour" limit (1038 days) for a γ =2 spectrum $\Phi_v \sim E^{-2}$ (20 TeV < E < 50 PeV),

and assuming $v_e:v_{\mu}:v_{\tau} = 1:1:1$ at Earth (1:2:0 at source)

 $E^2 \Phi_{\nu} < 8.1 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (Baikal 2005)

 $E^2 \Phi_v < 2.2 \cdot 10^{-7} \text{ GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ (Muons AMANDA-II, 2007)

90% C.L. Limit via W-RESONANCE production (E = 6.3 PeV, $\sigma = 5.3 \cdot 10^{-31}$ cm²)

 $\Phi_{ve} < 3.3 \cdot 10^{-20} (cm^2 \cdot s \cdot sr \cdot GeV)^{-1}$ (Baikal 2005)

 $\Phi_{ve} < 5.0 \cdot 10^{-20} \, (cm^2 \cdot s \cdot sr \cdot GeV)^{-1}$ (AMANDA 2004)

Limits on neutrino fluxes predicted by different models

Model survival factor $n_{90\%} / N_{model}$

Model	BAIKAL	AMANDA
SS05 Quasar	2.5	1.6
SP u	0.062	0.054
SP I	0.37	0.28
Μ pp+pγ	2.86	-
Ρ ργ	1.14	1.99
MPR	4.0	2.0
SeSi	2.12	-

Neutrino from Quasar cores

SS – Stecker, Salamon (96,05) SP – Szabo, Protheroe (92)

Neutrino from blazars

M pp+pγ - Mannheim (95)

- P pγ Protheroe (96)
- MPR Mannheim, Protheroe, Rachen (01)
- SeSi Semikoz, Sigl, (03)

Diffuse Flux Limits + Models

Astroprt. Phys. 25 (2006) 140

Ultimate goal of Baikal Neutrino Project:

Gigaton (km3) Volume Detector in Lake Baikal

Sparse instrumentation:

91 - 100 strings with 12 - 16 OMs (1300 - 1700 OMs) \rightarrow effective volume for >100 TeV cascades ~ 0.5 -1.0 km³ $\delta lg(E) \sim 0.1, \ \delta \theta_{med} < 4^{\circ}$

 \rightarrow detects muons with energy > 10 - 30TeV

Test Configurations of GVD sub array

2005: NT200+ - intermediate stage to Gigaton Volume Detector (km3 scale) is commissioned in Lake Baikal

Main physics goal:

Energy spectrum of all flavor extraterrestrial HE-neutrinos (E > 100 TeV)

Total number of OMs – 228 / 11 strings

Instrumented volume – 5 Mt (AMANDA II, ANTARES – 10 Mt)

Detection volume >10 Mt for $E_v > 10$ Pev _3

 high resolution of cascade vertex and energy —> neutrino energy

Atmospheric muon flux as a calibration source

Average distance between OMs: $L_{NT200+} = 10* L_{NT200}$

muon-bundles: 93% NT200+

45% NT200

60

Primary particle energy, lg(E/TeV)

Atmospheric muon flux as a calibration source

data consistent with MC-expectations

Hit channel multiplicity

Angular distributions

NT200+ Laser pulses as high-energy cascades

Laser intensity - cascade energy: $(10^{12} - 5 \ 10^{13}) \gamma$ /puls - (10 - 500) PeV

Ch.13 – 187 m far from laser A₁₃=140 ph.el. for 5 10^{13} γ/puls Sensitive vol./OM ~ 20 Mt

Baikal water properties: absorption - (22 – 24) m, scattering - 30 m – (arrival time delay, wider time distribution)

Ch. 13 (187 m far, 1 ph. el. level): arrival time delay – 7 ns rms of arrival time distribution – 8 ns (2-3 ns from electronics)

Expected mean arrival time for different scattering lengths

Expected rms of time distributions for different scattering lengths (without electronics error)

Laser coordinates reconstruction

PM selection for the km3 prototype string

Basic criteria of PM selection is its effective sensitivity to Cherenkov light which depends on Photocathode area × Quantum efficiency × Collection efficiency

Quasar-370 \bigcirc $D \approx 14.6''$ \bigcirc Quantum efficiency ≈ 0.15

Hamamatsu R8055?Pho $D \approx 13''$??Quantum efficiency ≈ 0.20 ??

Photonis XP1807 $D \approx 12''$ Quantum efficiency ≈ 0.24

PM selection: Underwater tests (2007)

4 PM R8055 (Hamamatsu) и 2 XP1807 (Photonis) were installed to NT200+ detector (April 2007).

4 PM: central telescope NT 200; 2 PM R8055: outer string, FADC prototype.

Relative effective sensitivities of large area PMs (preliminary results)

Smaller size (R8055, XP1807) tends to be compensated by higher photocathode sensitivities.

Relative effective sensitivities of large area PMs R8055/13", XP1807/12" and Quasar-370/14.6". Laboratory measurements (squares), in-situ tests (dots).

Prototype of FADC based system

2-channel FADC prototype was installed during expedition 2007

Purposes:

- optimal sampling time window

der de la constante de la const

3 700

700

- 1 channel

- dynamic range
- obtainable pulse parameter precision
- -algorithms for online data handling

Examples of FADC pulses for different classes of events:

- 1. One p.e. noise hit
- A muon trigger 2. (multi-p.e.)
- 3. Backward illumination by a calibration laser

Prototype string for a km3 Baikal neutrino telescope

Installation of a "new technology" prototype string as a part of NT200+ (spring 2008)

- Investigation and in-situ tests of basic knots of future detector: optical modules, DAQ system, new cable communications.
- Studies of basic DAQ/Triggering approach for the km3-detector.
- Confrontation of classical TDC/ADC approach with FADC readout.

FADC unit is operating now in Tunka detector (astro-ph/0511229)

Basic features

- String lengths ~300 m
- String contains 12...16 OM
- Optical modules contains only PM and control electronics
- 12 bit 200 MHz FADC readout is designed as multi channel separate unit.
- Half-string FADC controllers with ethernet-interface connected to string PC unit
- String PC connected by string DSL-modem to central PC unit

Acoustic method for neutrino detection – extension to UHE range

Schematic view of underwater 4-channel digital device for detection of acoustic signals

Power connection 300 v + network cable

Acoustic noise within 22-44 kHz frequency band at different depths

Example of bipolar pulses

Baikal – GVD Schedule Milestones

R&D, Testing NT200+ ()6-()7 **Technical Design** 08 08-14 Fabrication (OMs, cables, connectors, electronics) Deployment (0.1 - 0.3) km3 10-12 13-14 Deployment (0.3 - 0.6) km3 Deployment (0.6 - 0.9) km3 15-16

Overall cost ~ 20 MEuro

Detector ~ 16 MEuro Logistics, including infrastructure ~ 4 MEuro

- 1. The Baikal Telescope NT200 is in operation since 1998.
- 2. NT200 is focusing on search for HE-diffuse neutrinos: A "Mtondetector" with only 100kt enclosed volume.
 - Diffuse flux limits for 4 years (98-02) are challenging AGN-models.
- 3. NT200+ commissioned in April, 2005:
 - NT200+ is tailored to diffuse cosmic neutrinos
 - 5 Mton equipped volume; V_{det} > 10 Mton at 10 PeV

 \rightarrow sensitivity improvement by ~4×

4. R&D on Gigaton Volume Detector (km3 scale) on the base of experience of NT200+ operation

First step to BAIKAL-GVD

