

High Altitude Water Cherenkov Telescope

Gus Sinnis Los Alamos National Laboratory for the HAWC Collaboration

Scientific Goals of HAWC

- What are the origins of Galactic cosmic rays?
 - Detailed map of the Galactic diffuse emission
 - Extended sources Morphology & Energy Spectra
 - Energy spectra to > 100 TeV
- X-Ray Binary systems
 - Long-term monitoring (extended orbital periods)
 - Multi-wavelength data sets
- Active Galaxies
 - Long-term monitoring
 - Global energetics flare duty cycles
 - Many multi-wavelength and multi-messenger observations
- Gamma-ray bursts
 - TeV emission?
 - Lorentz factor of acceleration region?
- Fundamental physics & cosmology
 - Constraints/measure Lorentz invariance?
 - Do primordial black holes exist?

How to Improve on Milagro?

- Build at higher altitude (>4 km)
- Make a larger detector
 - Improved effective area
 - Improved background rejection
 - Improved angular resolution (larger lever arm)
 - Improved energy resolution
- Optically isolate PMTs
 - Remove single/multiple muon triggers
 - Improve angular resolution
 - Improve energy resolution

Altitude Effect

Difference between 2600m (Milagro) and 4100m: ~ 5-3x number of particles (energy dependent) ~ 3x lower median energy

HAWC: High Altitude Water Cherenkov

- Build pond at extreme altitude (Tibet 4300m, Mexico 4100m)
- Incorporate new design
 - Optical isolation between PMTs
 - Larger PMT spacing
 - Single PMT layer (4m deep)
- Reuse Milagro PMTs and electronics
- 22,500 m² sensitive area

~\$6M for complete detector

~10-15x sensitivity of Milagro

Crab Nebula in 1 day (4 hours) [Milagro 3-4 months]

4x Crab flux in 15 minutes

GRBs to z < 0.8 (now 0.4)

Farther Future: sHAWC

- Build pond at extreme altitude (Tibet 4300m, Bolivia 5200m, Mexico 4030m)
- Incorporate new design
 - Optical isolation between PMTs
 - Much larger area $(90,000 \text{ m}^2)$
 - Two layer design (2 m and 6 m below water surface)
- Advanced electronics and DAQ (~200MBytes/sec)

~\$50M for complete detector ~60x sensitivity of Milagro

- Crab Nebula in 30 minutes
- 4x Crab flare in 2 minutes
- GRBs to z >1 (now 0.4)

HAWC Effective Area v. Energy

Gamma/Hadron Separation

EST. 1943

RICAP, Rome June 2007

Background Rejection

Circles are EM particles > 1 GeV Circles are μ 's & hadrons > 1 GeV Circles are 30m radius (~area of Milagro μ layer)

Background Rejection in HAWC

low energy gamma events

Sensitivity of Synoptic TeV Telescopes

HAWC Sky Survey

Sensitivity vs. Source Size

Large, low surface brightness sources require large fov and large observation time to detect.

EAS arrays obtain >1500 hrs/yr observation for every source.

Large fov (2 sr):

Entire source & background simultaneously observable

Background well characterized

Sensitivity vs. Source Spectrum

GRB Sensitivity

Fluence Sensitivity to 10s GRB.

Both Milagro and HAWC can "self trigger" and generate alerts in real time. GRB rate in FOV ~100 GRB/year (BATSE rate)

<u>YBJ Laboratory – Tibet, China</u>

Elevation: 4300m Latitude: 30° 13' N Longitude: 90° 28' E

Lots of space. Available power. Available water.

Sierra Negra, Mexico

Elevation = 4100m or 4300m Latitude = $19^{\circ} 00'N$ Longitude = $97^{\circ} 17' W$ LMT nearby (mountain top) Power available Sufficient flat land area Water still not certain

Conclusion

- Enormous progress has been made in the past decade in TeV survey technology
- Large improvements are straightforward
 - ~2x Milagro cost yields ~10x sensitivity
- HAWC can attain high sensitivity over an entire hemisphere
 - ~10-15 times the sensitivity of Milagro
 - ~5 sigma/√day on the Crab
 - 30 mCrab sensitivity over hemisphere
 - Unsurpassed sensitivity to extended sources
 - Study Galactic diffuse emission
 - Unique TeV transient detector
 - (4*x* Crab in 15 minutes)

Detectors in Gamma-Ray Astrophysics

High Sensitivity

HESS, MAGIC, CANGAROO, VERITAS

Energy Range .05-50 TeV Area $> 10^4$ m² Background Rejection > 99%Angular Resolution 0.05° Aperture 0.003 sr Duty Cycle 10%

High Resolution Energy Spectra Studies of known sources Surveys of limited regions of sky

Low Energy Threshold

EGRET/GLAST

Energy Range 0.1-100 GeV Area: 1 m^2 Background Free Angular Resolution $0.1^\circ - 0.3^\circ$ Aperture 2.4 sr Duty Cycle > 90%

Unbiased Sky Survey (<100 GeV) Extended Sources Transients (AGN, GRBs) <100 GeV Simultaneous v Observations Large Aperture/High Duty Cycle

Milagro, Tibet, ARGO, HAWC

Energy Range 0.1-100 TeV Area > 10^4 m² Background Rejection > 95% Angular Resolution 0.3° - 0.7° Aperture > 2 sr Duty Cycle > 90%

Unbiased Sky Survey Extended Sources Transients (GRB's) Simultaneous v Observations

Event Reconstruction

Measure time to <1 ns

Direction reconstruction 0.5° to 1.4° (size dependent)

