Cosmic-Rays Astrophysics with AMS-02

Alberto Oliva* on the behalf of the AMS Collaboration

*University and INFN Perugia, Italy

RIF ROL FE LA CARCENT

Outline

- High Energy Astrophysics with AMS
- The AMS-02 Detector, and the Measurement Methods
- Expected Physics

AMS

AMS-02 experiment

High Energy Particle Physics in Space (ISS):

- Large Acceptance, Long Duration \rightarrow High Statistics
- Charged Particles & Nuclei Spectra
- High Energy Gamma Rays

Physics goals:

- Search for Primordial Antimatter by Direct Detection of Antinuclei (He/He<10⁻⁹)
- Dark Matter Signatures in \overline{p} , e⁺, \overline{d} , γ spectra
- Production, Acceleration and Propagation of Cosmic-Rays
- Solar Modulation

AMS-02 experiment

High Energy Particle Physics in Space (ISS):

- Large Acceptance, Long Duration \rightarrow High Statistics
- Charged Particles & Nuclei Spectra
- High Energy Gamma Rays

Physics goals:

- Search for Primordial Antimatter by Direct Detection of Antinuclei (He/He<10⁻⁹)
- Dark Matter Signatures in \overline{p} , e⁺, \overline{d} , γ spectra
- Production, Acceleration and Propagation of Cosmic-Rays
- Solar Modulation

CR spectrum and AMS-02 expectation

	stable	eta decay	K capture
primary CR	big bang and stellar nucleosynthesis	age of the origin material (U, Pu, Cm, …)	Delay between synthesis and acceleration (⁵⁶ Ni, ⁵⁷ Co)
secondary CR (dependent from ISM)	diffusion process (B/C, sub-Fe/Fe)	galaxy confinement time (¹⁰ Be, ²⁶ Al, ³⁶ Cl, ⁵⁴ Mn)	Energy changes (decelerations)

	stable	eta decay	K capture
primary CR	big bang and stellar nucleosynthesis	age of the origin material (U, Pu, Cm, …)	Delay between synthesis and acceleration (⁵⁶ Ni, ⁵⁷ Co)
secondary CR (dependent from ISM)	diffusion process (B/C, sub-Fe/Fe)	galaxy confinement time (¹⁰ Be, ²⁶ Al, ³⁶ Cl, ⁵⁴ Mn)	Energy changes (decelerations)

	stable	eta decay	K capture
primary CR	big bang and stellar nucleosynthesis	age of the origin material (U, Pu, Cm, …)	Delay between synthesis and acceleration (⁵⁶ Ni, ⁵⁷ Co)
secondary CR (dependent from ISM)	diffusion process (B/C, sub-Fe/Fe)	galaxy confinement time (¹⁰ Be, ²⁶ Al, ³⁶ Cl, ⁵⁴ Mn)	Energy changes (decelerations)

AMS-02 Detector

- Cryogenic Superconducting Magnet of 0.8 T
- TOF: 4 layers of scintillators (150 ps resolution)
- Tracker: 8 layers of Si detectors (10 (30) μm)
- **RICH Detector (** $\Delta\beta/\beta = 0.1/Z$ %)
- TRD Detector: p/e rejection in 10³
- Pb/Sc EM Calorimeter: p/e rejection 10⁴
- Geometric acceptance of 0.45 m²¢sr
- Z measurement up to Iron
- A global statistics above 10¹⁰ particles
- Detector redundancy (charge, velocity)
- Trigger: TOF, ACC (no ACC for ions) or ECAL for γ

Charge measurement

The charge evaluation is redundant

- **Tracker**, TOF: energy deposition by ionization
- RICH: number of photons in the Cherenkov ring

Rome ICAP07 – 21/06/2007 – A. Oliva —

Rigidity measurement

The AMS-02 Si Tracker:

- Silicon double-sided sensors
- 8 layers arranged in 5 planes
- Resolution < 10 μ m in the bending direction
- A rigidity determination of 2% at 10 GV

Velocity measurement

Redundant measurements

- TOF: $\beta = \Delta L/\Delta t$ with $\Delta \beta/\beta = 1\%$
- **RICH**: β with $\Delta\beta/\beta = 0.01\%$

Mass measurement

The AMS-02 spectrometry

- Tracker for rigidity and charge
- RICH for velocity and charge
- Isotopic distinction up to 10 GeV/n

Rome ICAP07 – 21/06/2007 – A. Oliva —

Mass measurement

The AMS-02 spectrometry

- Tracker for rigidity and charge
- RICH for velocity and charge
- Isotopic distinction up to 10 GeV/n

$$m = \frac{e}{c} \cdot \frac{RZ}{\beta\gamma}$$

$$\left(\frac{\Delta m}{m}\right)^2 = \left(\gamma^2 \frac{\Delta \beta}{\beta}\right)^2 + \left(\frac{\Delta R}{R}\right)^2$$

Long term measurement

After 3 years of "full" magnetic spectrometry:

- Lowering TRD gain by a factor 20
- Measure γ for charges up to Iron
- 10 30 % energy resolution
- From 200 to 4000 GeV/n

Expected Physics

Conclusions

- AMS-02 in the integration phase and will be installed on the ISS in 2009
- AMS-02 will perform high statistic measurement of all chemical species up to Iron in CR in a wide energy spectrum
- AMS-02 will play a key role in the CR Astrophysics studies

THANK YOU