The 9th International Symposium on Heavy Flavor Production in Hadron and Nuclear Collisions

Contribution ID: 30 Type: not specified

Exploring hadronic quarkonium production in QCD factorization formalism

Understanding heavy quarkonium production in hadronic collisions has attracted much interest and remains an exciting challenge in QCD studies. QCD factorization is a powerful approach for studying hadronic heavy quarkonium production at high transverse momentum (p_T) by implementing heavy quarkonium fragmentation functions (FFs). These FFs contain rich information on how a physical quarkonium bound state emerges from partons produced at short distances in high-energy scatterings. The scale evolution of quarkonium FFs is capable of resumming logarithmically enhanced corrections to the hadronic quarkonium production cross-section. Within the QCD factorization formalism, incorporating both leading-power and next-to-leading-power contributions at short distances in $1/p_T$ with the evolved quarkonium FFs allows for a description of the p_T spectrum of hadronic quarkonium production over a broad range of p_T .

This talk will present that the QCD factorization approach at leading power in $1/p_T$ with single-parton FFs describes recent LHC data on the prompt J/ψ production cross section in pp collisions at high p_T even larger than 100GeV. In contrast, the next-to-leading-power contributions with double-parton FFs are essential for describing the J/ψ p_T spectrum at low p_T , where the QCD factorization should be matched to NRQCD fixed-order calculations. We will also remark quarkonium's polarization in hadronic collisions.

Author: WATANABE, Kazuhiro (Tohoku University)

Presenter: WATANABE, Kazuhiro (Tohoku University)