Latest measurements of heavy flavor production in heavy-ion collisions with the ATLAS detector

Xinyan Liu 刘新宴 On behalf of the ATLAS Collaborations

Shandong University(Qingdao)

2024.12.7

mm

HF-HNC 2024

The Importance of Heavy Flavor

• Early Production:

Heavy quarks are produced in the early stages of high-energy collisions

- Sensitive to QGP: Masses much larger than temperature of QGP
 - $T_{QGP} \sim 200 500 \text{ MeV}$
 - Charm Mass : 1.275 GeV
 - Bottom Mass : 4.18 GeV
- Hadronization mechanisms in medium :

Interaction with medium – coalescence

Heavy flavors in heavy ion collisions

• Energy Loss Mechanisms:

Dead-Cone Effect (suppression of radiation emitted at small angles). HF in heavy ion collisions are sensitive probe to the QGP's **density** and **transport properties**.

- HF pair angular correlation have additional sensitivity to QGP-induced angular deflection
- Direct observation of bottom/charm hadronpairs is experimentally difficult. But measuring lepton-pairs from decays of HF-hadron pairs is possible

The different energy loss mechanisms of heavy quarks in the QGP.

b-jets in heavy-ion collisions

- Motivation of b-jet measurement (compared to inclusive jets):
 - b-jet have different quark/gluon mixture: Color charge known; inclusive jets are mixture of light quarks and gluons
 - Sensitive to the mixture of radiative and collisional energy loss in the QGP
 - Medium-induced gluon radiation expected to be suppressed due to dead-cone effect
- Suppression quantified by the nuclear modification factor R_{AA}
 - Per-event yield of b-jets vs expectation from pp scaled by nuclear thickness function(T_{AA}):

$$R_{AA}^{b-jet} \equiv \left. \frac{1}{N_{evt}} \frac{d^2 N_{AA}^{b-jet}}{dp_{T} dy} \right|_{cent} / \langle T_{AA} \rangle \frac{d^2 \sigma_{pp}^{b-jet}}{dp_{T} dy}$$

- Two latest results of HF measurements with ATLAS will discuss today:
 - Azimuthal correlation between muon-pairs from HF decays (PRL 132 (2024) 202301)
 - Suppression of b-jets (EPJC 83 (2023) 438)

Ref. arXiv: 1903.07709

ATLAS Heavy Ion Data

• Summary of heavy-ion collision data collected by ATLAS:

System	Year	$\sqrt{s_{NN}}$ [TeV]	\mathcal{L}_{int}	
Pb+Pb	2010	2.76	$7 \ \mu b^{-1}$	
Pb+Pb	2011	2.76	0.14 nb^{-1}	Dunt
pp	2013	2.76	4 pb^{-1}	nuiii
p+Pb	2013	5.02	$29 { m ~nb^{-1}}$	
$_{\rm pp}$	2015	5.02	$28 { m pb}^{-1}$	
Pb+Pb	2015	5.02	0.49 nb^{-1}	
p+Pb	2016	5.02	$0.5 { m ~nb^{-1}}$	
p+Pb	2016	8.16	$0.16 \ {\rm pb^{-1}}$	Run2
Xe+Xe	2017	5.44	$3 \ \mu b^{-1}$	
$^{\rm pp}$	2017	5.02	$270 { m ~pb^{-1}}$	
Pb+Pb	2018	5.02	$1.76 { m ~nb^{-1}}$	
Pb+Pb	2023	5.36	$1.71 { m ~nb^{-1}}$	
$_{\rm pp}$	2024	5.36	$425 { m pb}^{-1}$	Run3
Pb+Pb	2024	5.36	$1.67 {\rm ~nb^{-1}}$	TUID

ATLAS Heavy Ion Data

• Summary of heavy-ion collision data collected by ATLAS:

System	Year	$\sqrt{s_{NN}}$ [TeV]	\mathcal{L}_{int}	_
Pb+Pb	2010	2.76	$7 \ \mu b^{-1}$	
Pb+Pb	2011	2.76	0.14 nb^{-1}	Dun1
pp	2013	2.76	4 pb^{-1}	nuiii
p+Pb	2013	5.02	$29 { m ~nb^{-1}}$	
рр	2015	5.02	28 pb^{-1}	
Pb+Pb	2015	5.02	0.49 nb^{-1}	
p+Pb	2016	5.02	$0.5 { m ~nb^{-1}}$	
p+Pb	2016	8.16	$0.16 \ {\rm pb^{-1}}$	Run2
Xe+Xe	2017	5.44	$3 \ \mu b^{-1}$	
рр	2017	5.02	$270 { m ~pb^{-1}}$	
Pb+Pb	2018	5.02	$1.76 { m ~nb^{-1}}$	
Pb+Pb	2023	5.36	1.71 nb^{-1}	
pp	2024	5.36	425 pb^{-1}	Run3
Pb+Pb	2024	5.36	$1.67 { m ~nb^{-1}}$	

The results presenting today are based on 2017 pp run, 2015 and 2018 Pb+Pb runs

Data-MC comparisons for pp measurements

• $\Delta \phi = \phi_1 - \phi_2$ distribution for muon pairs in pp collisions:

- $pp \Delta \phi$ correlations of HF production well reproduced by POWHEG
- POWHEG calculations show relative contribution of $b\overline{b}$ and $c\overline{c}$:
 - Nearly all (96%) same-sign muon pairs result from $b\overline{b}$ decays
 - Most (85%) opp-sign muon pairs result from $b\overline{b}$ decays (15% from $c\overline{c}$ decays)

 $\Delta \phi$

Extraction of correlated pairs

• Compare (self-normalized) $\Delta \phi$ correlations between Pb+Pb and pp:

Fit correlation functions with the form: $C^{Fit}(\Delta \phi) = C_{comb} [1 + 2v_{2,2}^{eff} \cos(2\Delta \phi)] + C_{coor}(\Delta \phi)$ With $C_{coor}(\Delta \phi) = C_{corr}^{max} \Gamma^2 / ((\Delta \phi - \pi)^2 + \Gamma^2)$. The half-width at half-maximum (Γ) quantifies the shape of the correlation. Alternate parameterization: $\sigma \equiv \sqrt{\int (\Delta \phi - \pi)^2 (C_{coor}(\Delta \phi) - C_{coor}(0)) d\Delta \phi}$

Quantifying correlation shape vs centrality

• Compare half-width at half-maximum (Γ) as a function of centrality:

- Measurements consistent with "no centrality dependence"
- Pb+Pb and pp values consistent.
- Widths identical for "same-sign" and "opp-sign" pairs
- No indication of any centrality dependent broadening for $\bar{p}_T > 5 GeV!$

Quantifying correlation shape vs centrality

• Compare widths (σ) as a function of centrality:

- Same features observed for standard-deviation σ
- See strong $b \rightarrow \mu$ suppression (single b and for pairs)
- No significant angular deflection in $\Delta \phi$ correlation, indicating that the scattering effect of heavy-flavor particles in the QGP is minimal.

b-fraction estimated using template fit method on muon p_T-rel distribution

Differential cross-section for b-jet production

EPJC 83 (2023) 438

 Cross-sections for R=0.2 and R=0.4 b-jets with lyl<2.1 in 5.02 TeV pp data:

- Both cross-sections are compared with Pythia8 and Herwig calculations (consistent with data within 20% or better)
- The bands around unity represent the total uncertainty of the data

• Ratio of the predictions to the measured b-jet cross-section:

Comparison of b-jet and inclusive jet cross-sections EPJC 83 (2023) 438

The b-jet to inclusive jet cross-section ratio:

interpretation

• Cross-section of R=0.2 b-jet and inclusive jet production in pp collisions at 5.02 TeV:

- b-jets around 4% of the inclusive jet yield, independent of p_T from 80-280 GeV
- Measurement consistent with previous measurements from CMS @ 7 TeV and PYTHIA8

b-jet vs inclusive-jet R_{AA} difference

• b-jet R_{AA} for 0-20% centrality class compared with the inclusive jet R_{AA} :

- *R_{AA}* larger for b-jets ⇒ smaller suppression as compared to light jets
- LIDO model calculations consistent with data

• Ratio of b-jet R_{AA} to the inclusive jet R_{AA} for 0-20% centrality class:

- b-jets about 20% less suppressed (Weak p_T dependence in relative suppression)
- LIDO model calculations overpredict double ratios
- Calculations from Dai et. al. more consistent with double ratio (Though less consistent with R_{AA})

EPJC 83 (2023) 438

b-jet vs inclusive-jet R_{AA} difference

 Comparison of *R_{AA}* at 0-20%, 20-50% and 50-80% centrality:

- Consistent with unity in peripheral collisions
- R_{AA} decreases from peripheral to central events

Summary

- Azimuthal correlation between muon-pairs from HF decays (PRL 132 (2024) 202301)
 - Probe of heavy flavor interaction with the QGP
 - Dimuons provide access to back-to-back heavy quark pairs
 - No indication of any centrality dependent broadening for $\bar{p}_T > 5 GeV!$
 - Provide constraints on stochastic deflection of bottom quarks in the QGP
- Suppression of b-jets (EPJC 83 (2023) 438)
 - Provide a direct way to compare b-jets to inclusive jets
 - R_{AA} for b-jets larger than for inclusive-jets in central Pb+Pb collisions \Rightarrow b-jets less suppressed
 - Significant improvements are expected with the ongoing Run 3 luminosity increase!
- For more ATLAS heavy ion results:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavyIonsPublicResults

THANKS FOR YOUR ATTENTION

Final Results

- Difference of Widths between Pb+Pb and pp
- Measure of smearing from QGP interactions

 $\sigma_{int}^2 = \sigma_{Pb+Pb}^2 - \sigma_{pp}^2$

 both sign combinations dominated by b-bbar pairs according to PYTHIA but c-cbar only contributes to opposite sign pairs

EPJC 83 (2023) 438

b-jet vs inclusive-jet R_{AA} difference

• Ratio of b-jet R_{AA} to the inclusive jet R_{AA} for 0-20%, 20-50% and 50-80% centrality :

