Cold Nuclear Matter Effect for Heavy Flavor at EIC

Haitao Li Shandong University

Based on the works with Zelong Liu and Ivan Vitev HTL, Liu, Vitev, Phys.Lett.B 816 (2021) 136261 HTL, Vitev, Phys.Rev.Lett. 126 (2021) 25, 252001 HTL, Liu, Vitev, Phys.Lett.B 827 (2022) 137007 HTL, Liu, Vitev, Phys.Lett.B 848 (2024) 138354

HF-HNC 2024 Guangzhou, China

Introduction

- **D** nucleon and nuclear spin structure
- **nuclear** PDFs
- **gluon** saturation

Jet or hadron p_T spectrum at an EIC

- to go as low as possible in p_T to ensure enough statistics
- to go as high as possible in p_T for substructures to avoid large NP

Main Motivation

Use jet and hadron production at EIC to get better understanding of QCD and nucleon structure

to identify kinematic region where nuclear matter effect is relative large to disentangle the effects from nuclear PDFs and final state interaction to identify the mass effects using heavy flavor jet and hadron production

Difference between e+p and e+A collisions

nCTEQ15, EPPS21, nNNPDF3.0, TUJU21, KSASG20 et al

Introduction

1. Initial-state effects: parton densities are different, included in global-fit nuclear PDFs, or from Lattice QCD

Klasen, Paukkunen, arXiv: 2311.00450

Difference between e+p and e+A collisions

2. Final State effects from interactions between jet and nuclear matter

In our works, we used the functions with SCET_G

For example $q \rightarrow qg$ splitting function

Introduction

- In-medium parton showers for parton propagating through medium
 - Many methods to calculate the medium modified splitting process for a energetic parton in QCD medium

Ovanesyan, Vites, arXiv: 1103.1074, 1109.5619

Difference between e+p and e+A collisions

2. Final State effects from interactions between jet and nuclear matter

In our works, we used the functions with SCET_G

For example $q \rightarrow qg$ splitting functio

Introduction

- In-medium parton showers for parton propagating through medium
 - Many methods to calculate the medium modified splitting process for a energetic parton in QCD medium

$$\int \mathbf{I} = \mathbf{I}$$

Ovanesyan, Vites, arXiv: 1103.1074, 1109.5619

Jet Inclusive cross section

Comparison between NLO and factorized cross section

From Lab to the proton rest frame

In-medium shower corrections vary with the parton energy in the nuclear rest frame, where the lower energy partons receive larger medium corrections.

Jet Inclusive cross section

The inclusive jet cross section can be expressed in a factorized form with the help of semi-inclusive jet functions

 $\frac{d\sigma^{\ell N \to JX}}{dy_J d^2 \mathbf{p}_{T,J}} = \frac{1}{S} \sum_{s,f} \int_0^1 \frac{dx}{x} \int_0^1 \frac{dz}{z^2} f^{i/N}(x,\mu) \left[\hat{\sigma}^{i \to f} + f_{\text{ren}}^{\gamma/\ell} \left(\frac{-t}{s+u}, \mu \right) \hat{\sigma}^{\gamma i \to f} \right] J_f(z, p_T R, \mu)$

Hard part: arXiv:1505.06415 *Light Jet Function: arXiv:1606.06732* Heavy Flavor Jet Function: arXiv:1805.06014

Contribution to the semi-inclusive quark jet function

with the medium modified splitting function from SCET_G

Kang, Ringer, Vitev, arXiv:1701.05839 *HTL, Vitev, arXiv:1811.07905*

HTL, Vitev, arXiv:1811.07905

Jet Inclusive cross section

The inclusive jet cross section can be expressed in a factorized form with the help of semi-inclusive jet functions

 $\frac{d\sigma^{\ell N \to JX}}{dy_J d^2 \mathbf{p}_{T,J}} = \frac{1}{S} \sum_{s,f} \int_0^1 \frac{dx}{x} \int_0^1 \frac{dz}{z^2} f^{i/N}(x,\mu) \left[\hat{\sigma}^{i \to f} + f_{\text{ren}}^{\gamma/\ell} \left(\frac{-t}{s+u}, \mu \right) \hat{\sigma}^{\gamma i \to f} \right] J_f(z, p_T R, \mu)$

Hard part: arXiv:1505.06415 Light Jet Function: arXiv:1606.06732 Heavy Flavor Jet Function: arXiv:1805.06014

Contribution to the semi-inclusive quark jet function

with the medium modified splitting function from SCET_G

Kang, Ringer, Vitev, arXiv:1701.05839 *HTL, Vitev, arXiv:1811.07905*

HTL, Vitev, arXiv:1811.07905

Jet Inclusive cross section

The forward proton/nucleus going rapidity region $2 < \eta < 4$ produce the largest nuclear effects.

Modifications defined as

$$R_{eA}(R) = \frac{1}{A} \frac{\int_{\eta_1}^{\eta_2} d\sigma / d\eta dp_T \big|_{e+A}}{\int_{\eta_1}^{\eta_2} d\sigma / d\eta dp_T \big|_{e+p}}$$

Bjorken x in the anti-shadowing and EMC region

 \Box Final State effects decreasing with p_T increasing

Bands are scale uncertainties

Light jet, HTL, Vitev, arXiv:2010.05912

Jet Inclusive cross section

The forward proton/nucleus going rapidity region $2 < \eta < 4$ produce the largest nuclear effects.

Modifications defined as

$$R_{eA}(R) = \frac{1}{A} \frac{\int_{\eta_1}^{\eta_2} d\sigma / d\eta dp_T \big|_{e+A}}{\int_{\eta_1}^{\eta_2} d\sigma / d\eta dp_T \big|_{e+p}}$$

Bjorken x in the anti-shadowing and EMC region

 \Box Final State effects decreasing with p_T increasing

Bands are scale uncertainties

Light jet, HTL, Vitev, arXiv:2010.05912

Jet Inclusive cross section

The forward proton/nucleus going rapidity region $2 < \eta < 4$ produce the largest nuclear effects.

Modifications defined as

$$R_{eA}(R) = \frac{1}{A} \frac{\int_{\eta_1}^{\eta_2} d\sigma / d\eta dp_T \big|_{e+A}}{\int_{\eta_1}^{\eta_2} d\sigma / d\eta dp_T \big|_{e+p}}$$

Bjorken x in the anti-shadowing and EMC region

 \Box Final State effects decreasing with p_T increasing

Bands are scale uncertainties

Light jet, HTL, Vitev, arXiv:2010.05912

Jet Inclusive cross section

We proposed the double ratio

 $\frac{R_{\rm eA}(R)}{R_{\rm eA}(R=1)}$

- □ Essential reduce the role of nPDFs
- □ Enhance the effects due to final-state interactions

Jet@EIC

enhanced by the steeper pT spectra

Jet Inclusive cross section

 $\langle q_{\perp} \rangle / \lambda_q \approx \langle q_{\perp} \rangle / \lambda_g C_F / C_A = 0.05 \text{ GeV}^2 / \text{fm}$

Uncertainties by varying transport parameter

 \Box separation of jet suppression for different radius *R* Initial-state effects play an important role primarily sensitive to the so called EMC region

HTL, Liu, Vitev, arXiv:2108.07809

Jet Inclusive cross section

 $\langle q_{\perp} \rangle / \lambda_q \approx \langle q_{\perp} \rangle / \lambda_g C_F / C_A = 0.05 \text{ GeV}^2 / \text{fm}$ Uncertainties by varying transport parameter

HTL, Liu, Vitev, arXiv:2108.07809

Jet structures

Cancellation between u and d jet

Excellent way to constrain isospin effects and the up/down quark PDFs in the nucleus.

$$z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}}$$
 with $z_g > z_{cut}$

Groomed jet splitting functions for $c \rightarrow cg$ and $b \rightarrow bg$.

For 94 GeV jet in rest frame of the nucleus

(a) 8 Spectators 6 Participants

Hegazy et al 2411.07963 (b)

Jet@EIC

Centrality-dependent modification

Centrality	0 - 1%	0-3~%	0-10~%	60-100~%	80-100~%	90-100~%
$\langle d angle [fm]$	9.09	8.48	7.61	2.88	2.71	2.71
$\langle d angle / \langle d angle_{ m min.bias}$	2.07	1.93	1.73	0.65	0.62	0.62

function of centrality obtained in BeAGLE

In collinear factorization, the inclusive cross section for hadron production is

$$\frac{d\sigma^{\ell N \to hX}}{dy_h d^2 \mathbf{p}_{T,h}} = \frac{1}{S} \sum_{i,f} \int_0^1 \frac{dx}{x} \int_0^1 \frac{dz}{z^2} f^{i/N}(x,\mu) \left[\hat{\sigma}^{i \to f} + f_{\text{ren}}^{\gamma/\ell} \left(\frac{-t}{s+u}, \mu \right) \right]$$

Hard part: arXiv:1505.06415 DSS, HKNS, AKK, SGK, NNFF, MAPFF, JAM. NPC23

Gao, Liu, Shen, Xing, Zhao, arXiv:2401.02781, 2407.04422

We used HKNS FF for pion and results from HQET for heavy flavors

medium effects included by

$$\frac{d}{d\ln\mu^2}\tilde{D}^{h/i}(x,\mu) = \sum_j \int_x^1 \frac{dz}{z}\tilde{D}^{h/j}\left(\frac{x}{z},\mu\right)\left(P_{ji}\left(z,\alpha_s(\mu)\right) + P_{ji}^{\mathrm{med}}(z,\mu)\right)$$

12

In collinear factorization, the inclusive cross section for hadron production is

$$\frac{d\sigma^{\ell N \to hX}}{dy_h d^2 \mathbf{p}_{T,h}} = \frac{1}{S} \sum_{i,f} \int_0^1 \frac{dx}{x} \int_0^1 \frac{dz}{z^2} f^{i/N}(x,\mu) \left[\hat{\sigma}^{i \to f} + f_{\text{ren}}^{\gamma/\ell} \left(\frac{-t}{s+u}, \mu \right) \right]$$

Hard part: arXiv:1505.06415 DSS, HKNS, AKK, SGK, NNFF, MAPFF, JAM. NPC23

Gao, Liu, Shen, Xing, Zhao, arXiv:2401.02781, 2407.04422

We used HKNS FF for pion and results from HQET for heavy flavors

medium effects included by

$$\frac{d}{d\ln\mu^2}\tilde{D}^{h/i}(x,\mu) = \sum_j \int_x^1 \frac{dz}{z}\tilde{D}^{h/j}\left(\frac{x}{z},\mu\right)\left(P_{ji}\left(z,\alpha_s(\mu)\right) + P_{ji}^{\mathrm{med}}(z,\mu)\right)$$

 $\langle q_{\perp} \rangle / \lambda_q \approx \langle q_{\perp} \rangle / \lambda_g C_F / C_A = 0.05 \text{ GeV}^2 / \text{fm}$

Uncertainties by varying transport parameter

HTL, Liu, Vitev, arXiv:2007.10994

Compare our calculations with HERMES measurements

HTL, Liu, Vitev, arXiv:2007.10994

Hadro

Compare our calculations with HERMES measurements

HTL, Liu, Vitev, arXiv:2007.10994

	phoetic of the second s													
=	Energy		5 GeV×40 GeV		10 GeV×100 GeV		18 GeV×275 GeV		<u>`</u>					
-	p_T^h	[GeV]	[2,3]	[5,6]	[2,3]	[5,6]	[2,3]	[5,6]						
-	π^+	LO	5.3×10^{6}	2.4×10^{4}	1.4×10^{7}	3.0×10^{5}	2.9×10^{7}	9.6×10^{5}						
		NLO	1.1×10^{7}	6.9×10^{4}	2.8×10^{7}	6.1×10^{5}	5.6×10^{7}	1.9×10^{6}						
-	D^0	LO	1.4×10^{6}	3.2×10^{3}	8.6×10^{6}	9.0×10^{4}	3.1×10^{7}	6.6×10^{5}						
		NLO	3.7×10^{6}	8.5×10^{3}	2.1×10^{7}	2.1×10^{5}	7.2×10^{7}	1.5×10^{6}						
B^0	D 0	LO	3.7×10^{5}	1.2×10^{3}	2.4×10^{6}	2.8×10^{4}	9.0×10^{6}	2.0×10^{5}						
	NLO	1.1×10^{6}	3.3×10^{3}	6.2×10^{6}	7.2×10^{4}	2.1×10^{7}	4.7×10^{5}							

numbers of light, charm, and bottom hadron produced at the EIC with a typical one year integrated luminosity of 10 fb^{-1}

Compare our calculations with HERMES measurements

HTL, Liu, Vitev, arXiv:2007.10994

Jood

Nucleon Energy Correlators

$$\Sigma_N(Q^2,\theta^2) = \sum_i \int d\sigma(x_B,Q)$$

Hard: measures the perturbative behavior of QCD TMD: measures perturbative and nonperturbative TMD physics

HTL, Vitev, Zhu, arXiv:2006.02437 HTL, Makris, Vitev, arXiv: 2102.05669 *Cao, HTL, Mi, arXiv:2312.07655*

EEC@EIC

 $Q^2, p_i) x_B^{N-1} \frac{\bar{n} \cdot p_i}{P} \,\delta(\theta^2 - \theta_i^2)$

Liu, Zhu, arXiv:2209.02080 Cao, Liu, Zhu, arXiv:2303.01530

Devereaux, Fan, Ke, Lee, Moult, arXiv: 2303.08143 Fu, Muller, Sirimanna, arXiv: 2411.04866 Andres, Dominguez, Holguin, Marquet, Moult, arXiv:2411.15298

$$\Sigma_N(Q^2,\theta^2) = \sum_i \int d\sigma(x_B,Q)$$

Cao, HTL, Mi, arXiv:2312.07655

EEC@EIC

Conclusion

Presented the method to separate the initial and final state effects

Discussed the Centrality-dependent modification

Discussed nuclear matter corrections to hadron production at EIC

D Briefly discussed using the EEC to probe nuclear structure

- Investigated nuclear matter corrections to light and heavy flavor jet production at EIC

Conclusion

Presented the method to separate the initial and final state effects

Discussed the Centrality-dependent modification

Discussed nuclear matter corrections to hadron production at EIC

D Briefly discussed using the EEC to probe nuclear structure

Thank you!

- Investigated nuclear matter corrections to light and heavy flavor jet production at EIC