

Recent heavy flavor measurements at CMS

Nihar Ranjan Saha

Indian Institute of Technology Madras (On behalf of CMS collaboration)

The 9th International Symposium on Heavy Flavor Production in Hadron and Nuclear Collisions [6-11 December 2024 | Guangzhu, China |

Road map: Past, Present and Future

Nihar Ranjan Saha

HF-HNC 2024 | Guangzhou, China

Heavy flavor in AA collisions

Charged particle

Non-overlapping

region

Collision plane

Overlapping region

Production and R_{AA} of Λ_{C}

Significant suppression of Λ_c from central to peripheral

JHEP01(2024)128

TE OF TEA

- $\Lambda_{\rm C}/{\rm D}^0$ ratio for PbPb is consistent with pp data for $p_{\rm T} > 10$ GeV/c.
- Coalescence process doesn't play a significant role for high p_T
- Model for PbPb collisions (0-20% centrality) almost consistent with data for p_T 10-12.5 GeV/c (0-10% centrality)

- Λ_{c}/D^{0} ratio decreases with increasing p_{T}
- Consistent with pp and PbPb results

pPb 97.8 nb⁻¹ (8.16 TeV) CMS pPb (5.02 TeV) $(\Lambda + \overline{\Lambda}) / 2 K_{S}^{0}$ • $(\Lambda_c^+ + \Lambda_c^-) / (D^0 + \overline{D^0})$ Baryon-to-meson ratio $|y_{cm}| < 1$ $-1.46 < y_{cm} < 0.54$ 0.8 0.6 0.2 3 < p_ < 5 GeV 100 50 150 200 250 $N_{ m trk}^{ m offline}$

- No significant multiplicity dependence
- Differs from strange quark trend
- Coalescence process saturates early for charm quark with multiplicity

CMS-PAS-HIN-21-016

- B_s being heavier is less suppressed than B⁺
- $\mathbf{B}^+ \mathbf{R}_{AA}$ are consistent with charged hadrons and \mathbf{D}^0 mesons for $\mathbf{p}_T > 10$ GeV/c.
- ★ Less suppression at lower p_T.
 ➤ Mass dependence of parton energy loss.

- ***** First observation of $\Upsilon(3S)$ in Pb-Pb collisions in CMS, with a significance above 5σ .
- Both states are strongly suppressed in central Pb-Pb collisions and the entire measured p_T range.

Stronger suppression for the $\Upsilon(3S)$ than $\Upsilon(2S)$.

No significant dependence on p_{\tau}.

- **Solution** Observed multiplicity dependence of prompt cross-section ratio.
- The measurements constrain hadronization models of heavy quarks.

- $v_2 \mathbf{b} \rightarrow \mathbf{D}^{\mathbf{0}}$ > Non-zero v_2 at low \mathbf{p}_{T}
 - > Weak p_T dependence
- $v_3 \mathbf{b} \rightarrow \mathbf{D^0}$ \succ Effects of initial geometry fluctuation at low \mathbf{p}_T

Nihar Ranjan Saha

*All centrality plots are in backup

 $v_2 \mathbf{b} \rightarrow \mathbf{D^0}$ \gg Non-zero v_2 at low p_T \gg Weak p_T dependence

$$v_3 b \rightarrow D^0$$

 \succ Effects of initial
geometry fluctuation
at low p_T

 Qualitative agreement with model predictions

*All centrality plots are in backup

PLB 850 (2024)138389

- No clear p_T dependence within uncertainty.
- Significant deviation from model predictions.
- Scope for precision improvement.

JHEP10(2023)115

At low p_T :

- **Seauty** v_2 < Charm v_2 < Light v_2
- Weaker collectivity of heavy quarks than light quarks.

At high p_{T} :

- All flavors tend to converge.
- Mass hierarchy disappears.

PLB 816 (2021) 136255 PLB 776 (2021) 195 PLB 850 (2024) 138389 JHEP 10 (2023) 115

Follow for details, 8th Dec: Lida Kalipoliti's talk on Heavy flavor jets as probes of the QGP

HF Jet groomed observables

✤ First substructure measurement of b jets ➡ b quark mass effects.

HF-HNC 2024 | Guangzhou, China

 $\ln(1/\Delta R_{12})$

small angle

large angle

CM

- Jet grooming algorithms: late-kT angle distributions and SD angle, used to study the intrajet radiation pattern.
- ✤ The shift observed in late-k_T is consistent with the dead cone effect.
- The measurement set constraints on the substructure of high- p_{τ} charm quark jets.

Follow for details, 9th Dec: Zaochen Ye's talk on Heavy flavor production in UPC

D⁰ production in UPC PbPb

- Xn0n PbPb events with rapidity gap with 2023 PbPb data.
- Wide x (partons momentum fraction), Q² (resolution of the probe) coverage.
- Ideal probe to test the transition towards low-x nuclear matter.

First measurement of the cross section for photonuclear inclusive production of D⁰ mesons.

***** The measured cross sections are in good agreement with the theoretical calculation.

CMS

HF measurement in PbPb/pPb *

- \succ
- Measurement of $\Lambda_{C}^{}$ $R_{AA}^{}$ $\Lambda_{C}^{}/D^{0}$ in PbPb and pPb \succ
- B^{+} and $B_{S} R_{AA}$ \succ
- Y(nS) double ratio \succ
- Multiplicity dependence $\sigma_{\Psi(2S)}/\sigma_{J/\psi}$ \succ
- Collective flow of $b \rightarrow D^0$ \succ
- \succ Collective flow of J/ψ

HF measurement in PbPb/pPb *

- \succ
- Measurement of $\Lambda_{\rm C} R_{\rm AA}$ $\Lambda_{\rm C}/{\rm D}^0$ in PbPb and pPb \succ
- \succ B^{+} and $B_{S} R_{AA}$
- Y(nS) double ratio \succ
- Multiplicity dependence $\sigma_{\Psi(2S)}/\sigma_{J/\psi}$ \succ
- Collective flow of b->D⁰ \succ
- \succ Collective flow of J/ψ

HF Jets measurement *

- Rg and Zg of B and inclusive jet. \succ
- Ratio of the late-kT angle and SD angle \succ for D^0 and inclusive jets.

HF measurement in PbPb/pPb *

- \succ
- Measurement of $\Lambda_{\rm C} R_{\rm AA}$ $\Lambda_{\rm C}/{\rm D}^0$ in PbPb and pPb \succ
- B^{+} and $B_{S} R_{AA}$ \succ
- Y(nS) double ratio \succ
- Multiplicity dependence $\sigma_{\Psi(2S)}/\sigma_{J/\psi}$ \succ
- Collective flow of b->D⁰ \triangleright
- \succ Collective flow of J/ψ

HF Jets measurement *

- Rg and Zg of B and inclusive jet. \succ
- Ratio of the late-kT angle and SD angle \succ for D^0 and inclusive jets.

HF in UPC *

First photoproduction of D⁰ \succ

PbPb 0.607 nb⁻¹, pp 252 nb⁻¹ (5.02 TeV

¥ 0-90% PbPb

0–10% PbPb

Cent. 0-20%

PRL124 (2020) 042301

pp

20

1.6 D⁰, Cent. 0-100%

1.4 h*, Cent. 0-100%

+|y| < 1

* |n| < 1

CMS

ĥ

⁺₀**Q**) / (⁰₀ − ⁺ 0.6

PbPb 1.6 nb⁻¹ (5.02 TeV

Nonprompt J/g, Cent. 10-60%

Prompt J/u. Cent. 10-605

0 18 × M × 24

♦ 1.6 < lyl < 2.4</p>

Ivl < 2.4</p>

♦ lyl < 2.4

Prompt D^o

CMS Preliminary

Y(1S)

Charged hadrons

W < 1 Cent 10-30%

+ lyl < 2.4, Cent. 10-30%

0.25

0.2

B⁺, Cent. 0-90%

+ 1.5 < |y| < 2.4

B. Cent. 0-90%

Some Ideas of CMS HF analyses

...Good time ahead for HF analyses with new Run3 data!

Some Ideas of CMS HF analyses

BACKUP

measurement of non-prompt **D**⁰

- Distributions of groomed substructure observables Rg (left) and zg (right) corrected to the stable-particle level for inclusive jets.
- PYTHIA8 CP5 agrees with the data within the experimental uncertainty, while HERWIG7 deviates slightly.

HF-HNC 2024 | Guangzhou, China