

Bottomonium potential from deep learning

refs:

SS, Zhou, Zhao, Mukherjee, Zhuang, Wang, SS, Zhou, SS, Wang, Zhou, a recent review: Zhou, Wang, Pang, **SS**

施舒哲 清华大学

Phys. Rev. D 105, 014017; Phys. Rev. D 106, L051502; Comput.Phys.Commun. 282 (2023) 108547.

Prog.Part.Nucl.Phys.104084(2023)[2303.15136].

Quarkonium in the QGP

• In heavy-ion collisions, quarkonium production serves as a probe of the QGP.

01

Quarkonium in the QGP

- In heavy-ion collisions, quarkonium production serves as a probe of the QGP. Accurate understanding of the in-medium heavy-quark interaction?
- - Real potential modified by color-screening
 - Imaginary potential arises due to $(QQ)_1 \rightarrow (QQ)_8$, Landau damping, ...

01

Quarkonium in the QGP

- In heavy-ion collisions, quarkonium production serves as a probe of the QGP. Accurate understanding of the in-medium heavy-quark interaction?
- - Real potential modified by color-screening
 - Imaginary potential arises due to $(QQ)_1 \rightarrow (QQ)_8$, Landau damping, ...

Hard Thermal Loop potentials

$$V_R(T,r) = \frac{\sigma}{\mu_D} \left(2 - (2 + \mu_D r)e^{-\mu_D r} \right) - \alpha \left(\mu_D + \frac{e^{-\mu_D r}}{r} \right) + B,$$

$$V_{I}(T,r) = -\frac{\sqrt{\pi}}{4} \mu_{D} T \sigma r^{3} G_{2,4}^{2,2} \left(\frac{-\frac{1}{2}, -\frac{1}{2}}{\frac{1}{2}, \frac{1}{2}, -\frac{3}{2}, -1} \right| \frac{\mu_{D}^{2} r^{2}}{4} \right) - \alpha T \phi(\mu_{D} r) \,.$$

see e.g., Laine, Philipsen, Romatschke, and Tassler, JHEP 03, 054 (2007)

01

Bottomonium mass and thermal width, lattice QCD with finite m_Q

R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky: Phys.Rev.D100,074506(2019), Phys.Lett.B800,

Phys.Rev.D100,074506(2019), Phys.Lett.B800,135119(2020), Phys.Rev.D102,114508(2020)

R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky:

Phys.Rev.D100,074506(2019), Phys.Lett.B800,135119(2020), Phys.Rev.D102,114508(2020)

R. Larsen, S. Meinel, S. Mukherjee, and P. Petreczky:

Phys.Rev.D100,074506(2019), Phys.Lett.B800,135119(2020), Phys.Rev.D102,114508(2020)

Can we understand the new lattice result using Hard Thermal Loop potential?

Can we understand the new lattice result using Hard Thermal Loop potential?

How to learn V(r) from $\{E_n\}$?

parameterize the potential $V(r | \theta)$, minimize $\chi^2 \equiv \sum_{i} \left(\frac{E_{\theta,i} - E_i}{\delta E_i} \right)^2$

How to learn V(r) from $\{E_n\}$?

- a *gradient-descent* based method:
 - goal -- find the θ -point that $\nabla_{\theta} \chi^2 = 0$
 - update θ iteratively according to $\Delta \theta \propto \nabla_{\theta} \chi^2$

parameterize the potential $V(r | \theta)$, minimize $\chi^2 \equiv \sum \left(\frac{E_{\theta,i} - E_i}{\delta E_i} \right)^2$

Finite Temperature Heavy-Quark Potential

Finite Temperature Heavy-Quark Potential

What physics we have learned from $V_{\text{DNN}}(T, r)$?

Reason of the difference?

Dibyendu Bala,¹ Olaf Kaczmarek,¹ Rasmus Larsen,² Swagato Mukherjee,³ Gaurang Parkar,² Peter Petreczky,³ Alexander Rothkopf,² and Johannes Heinrich Weber⁴

PHYSICAL REVIEW D 105, 054513 (2022)

Static quark-antiquark interactions at nonzero temperature from lattice QCD

(HotQCD Collaboration)

Reason of the difference?

(HotQCD Collaboration)

Reason of the difference?

PHYSICAL REVIEW D 105, 054513 (2022)

Static quark-antiquark interactions at nonzero temperature from lattice QCD

Dibyendu Bala,¹ Olaf Kaczmarek,¹ Rasmus Larsen,² Swagato Mukherjee,³ Gaurang Parkar,² Peter Petreczky,³ Alexander Rothkopf,² and Johannes Heinrich Weber⁴

(HotQCD Collaboration)

Problem # II:

spectral function reconstruction

refs:

SS, Wang, Zhou, Comput.Phys.Commun. 282 (2023) 108547; Wang, **SS**, Zhou, Phys. Rev. D **106**, L051502;

Can one learn the spectral function from correlation?

Can one learn the spectral function from correlation?

- ill-conditioned?
 - one needs more points in ω than that were given in k

Can one learn the spectral function from correlation?

- ill-conditioned?
 - one needs more points in ω than that were given in k

resolved by increasing # of k-points?

• No!!! The problem is ill-posed!!!

20

ill-posedness of inverse KL convolution

$$D(k) = \frac{1}{\pi}$$

Linear operator in continuous space, maps $\mathbb{R}_{[0,+\infty)}$ to $\mathbb{R}_{[0,+\infty)}$.

 $\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\omega \, \mathrm{d}\omega}{\omega^2 + k^2} \rho(\omega)$

 $\mathbb{R}_{[0,+\infty)}$: Real function defined in the domain $[0, +\infty)$.

ill-posedness of inverse KL convolution

$$D(k) = \frac{1}{\pi}$$

Linear operator in continuous space, maps $\mathbb{R}_{[0,+\infty)}$ to $\mathbb{R}_{[0,+\infty)}$. One can define its eigenfunctions and eigenvalues:

$$\frac{1}{\pi} \int_0^\infty \frac{\omega \,\mathrm{d}\omega}{\omega^2 + k^2} \psi(\omega) = \lambda \,\psi(k) \,,$$

 $\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\omega \, \mathrm{d}\omega}{\omega^2 + k^2} \rho(\omega)$

 $\mathbb{R}_{[0,+\infty)}$: Real function defined in the domain $[0, +\infty)$.

$$\frac{1}{\pi} \int_0^\infty \frac{\omega \,\mathrm{d}\omega}{\omega^2 + k^2} \psi(\omega) = \lambda \,\psi(k) \,,$$

infinite amount of solutions, labeled by (continuous) s:

 $D(k) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\omega \,\mathrm{d}\omega}{\omega^2 + k^2} \rho(\omega)$

 $\widetilde{\rho}_{\pm}(s) = \widetilde{D}_{\pm}(s) / \lambda_s$

$$\frac{1}{\pi} \int_0^\infty \frac{\omega \,\mathrm{d}\omega}{\omega^2 + k^2} \psi_{\pm,s}(\omega) = \lambda_s \,\psi_{\pm,s}(\omega)$$

 $D(k) = \frac{1}{\pi} \int_0^\infty \frac{\omega \,\mathrm{d}\omega}{\omega^2 + k^2} \rho(\omega)$

$$\frac{1}{\pi} \int_0^\infty \frac{\omega \,\mathrm{d}\omega}{\omega^2 + k^2} \psi_{\pm,s}(\omega) = \lambda_s \,\psi_{\pm,s}(\omega)$$

 $D(k) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\omega \, \mathrm{d}\omega}{\omega^2 + k^2} \rho(\omega)$ $\widetilde{\rho_{\pm}}(s) = \widetilde{D_{\pm}}(s) / \lambda_s$

 $\frac{1}{\pi} \int_0^\infty \frac{\omega \,\mathrm{d}\omega}{\omega^2 + k^2} \psi_{\pm,s}(\omega) = \lambda_s \,\psi_{\pm,s}(k) \,,$

 $D(k) = \frac{1}{\pi} \int_{0}^{\infty} \frac{\omega \, d\omega}{\omega^2 + k^2} \rho(\omega)$ $\rho(\omega) = \sum_{i=1}^{+\infty} \int_{-\infty}^{+\infty} \frac{\mathrm{d}s}{2} \widetilde{\rho}_{\pm}(s) \psi_{i,s}(\omega)$ $\widetilde{\rho_{\pm}}(s) = \widetilde{D_{\pm}}(s) / \lambda_s$ contains non-zero but 0.4 arbitrarily small eigenvalues, non-invertible given finite $\gamma_{s,\pm}^{0.3}$ 0.2 numerical precision. 0.1 $0.0 \stackrel{\square}{_{0}}$ S

 $D(k) = \frac{1}{\pi} \int_0^\infty \frac{\omega \,\mathrm{d}\omega}{\omega^2 + k^2} \rho(\omega)$

relook at the discrepancy

relook at the discrepancy

Then, why Deep Learning?

DNN is a natural implementation of smoothness regularization!

Then, why Deep Learning?

DNN is a natural implementation of smoothness regularization!

Robustness against larger noise

Summary

- New algorithm employing DNN to solve inverse problems;
- Extracted HF complex V(T, r);
- Reconstructing spectral function ... is ill-posed!!!
 - physics-based parameterization
 - real time evolution?
 - supervised learning?

How to learn V(r) from $\{E_n\}$?

parameterize the potential $V(r | \theta)$, scan the whole θ -space, minimize $\chi^2 \equiv \sum_{i} \left(\frac{E_{\theta,i} - E_i}{\delta E_i} \right)^2$

- a gradient-descent based method:
 - goal -- find the θ -point that $\nabla_{\theta} \chi^2 = 0$
 - update θ iteratively according to $\Delta \theta \propto \nabla_{\theta} \chi^2$

general unbiased parameterization scheme? Deep Neural Network!

How to compute the likelihood (density) distribution of V_{A}

 $P(V_{\theta}) dV = \text{Posterior}(\theta \mid \text{data}) d^{N} \theta$

- Sample $\{\boldsymbol{\theta}_i\}$ according to a reference distribution: $P(\boldsymbol{\theta}) = \tilde{P}(\boldsymbol{\theta})$; • Each data point corresponds to the element volume $d^N \theta_i = 1/\tilde{P}(\theta_i)$; • Compute $V_{\theta_i}(r)$, $\chi^2_{\theta_i}$, and Posterior(θ_i | data);
- For given r, histogram $V_{\theta_i}(r)$ with weights

 $w_i = P(V_{\theta_i}) dV_i = \text{Posterior}(\theta_i) / \tilde{P}(\theta_i)$

• In practice:

$$\tilde{P}(\boldsymbol{\theta}) = (2\pi)^{-N_{\theta}/2} \sqrt{\det[\Sigma^{-1}]} \times \exp\left[-\frac{\Sigma_{ab}^{-1}}{2}(\theta_a - \theta_a^{\text{opt}})(\theta_b - \theta_b^{\text{opt}})\right] \qquad \Sigma_{ab}^{-1} = \lambda \delta_{ab} + \frac{1}{2} \frac{\partial^2 \chi^2(\boldsymbol{\theta})}{\partial \theta_a \partial \theta_b}$$

(iterative function substitution)

- At the first layer:

06

$V(r) \approx V_{\text{DNN}}(r | \text{parameters})$

Each \bigcirc is an intermediate function $(a_i^{(l)})$:

- At the first layer:
- At later layers:

06

- At later layers:

