

Experimental overview of open HF production in small systems

Xianglei Zhu, 朱相雷 Tsinghua University

2024.12.8

The 9th International Symposium on Heavy Flavor Production in Hadron and Nuclear Collisions (HF-HNC 2024), Guangzhou, Dec. 6-11, 2024

Outline

- Total charm/bottom cross-sections in pp
- Nuclear modification factors of heavy flavor hadrons
- Charm and bottom hadronization
- Summary

$$\sigma_{AB \to H} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{ab \to q\bar{q}}(x_a, x_b, Q^2) \otimes D_{q \to H}(z = p_H/p_q, Q^2)$$
Parton distribution
functions
Hard scattering
cross section
(hadronization)

F. Zanone, HP2024

Total charm cross-sections in pp

- Lies at the upper edge of pQCD predictions at both mid and forward rapidities
- Ratios of the cross-sections for different energies consistent with theoretical predictions

Total bottom cross-sections in pp

CMS, arXiv: 2409.07258

4

Cold nuclear matter effects studied in pA collisions

• nPDF; CGC; energy loss; multiple scattering (Cronin effect)

Prompt D meson production in pPb at 5.02 TeV

- One of the strongest constraint on gluon nPDF
- All *D* mesons suppressed at forward rapidity \rightarrow gluon shadowing at small *x*
- *D* meson species dependence at backward rapidity
 → final state effects become important

Prompt D meson production in pPb at 8.16 TeV

- Precise differential measurements in different rapidity regions
 → gluon shadowing at forward rapidity
- D⁰ data at low p_T closer to CGC prediction, or initial state energy loss becomes more important

LHCb, PRD 110 (2024) L031105

Pb

Prompt D meson production in pPb at 8.16 TeV

- All *D* meson data lower than nPDF calculations at high p_T !
 - → Onset of charm energy loss in cold/hot nuclear matter ?
 - Model comparisons desired
 - → Or charmed baryon enhanced ? More measurements expected

LHCb, PRD 110 (2024) L031105

Charmed hadron R_{pPb} at mid-rapidity

- Prompt *D* mesons not suppressed at mid-rapidity across the whole p_T range ? \rightarrow More precise measurements in Run3 expected
- Prompt Λ_c^+ indeed shows strong enhancement at intermediate to high $p_T \rightarrow$ More precise measurements (Run3, other experiments / charmed baryons) are essential

- Non-prompt *D* and non-prompt J/ψ data consistent with direct B^+ measurements
- Consistent with the nPDF calculations at all rapidity ranges
- R_{HL} data set constraints on medium effect on B^+ production

Top-quark pair R_{pPb}

QM2022 P. Paakkinen

ATLAS, JHEP 11 (2024) 101

- Sensitive to gluon PDF in the large $x (\sim 0.1)$ and large Q^2 region
- Slightly larger than unity, good agreement with most NNLO+nPDF calculations

Prompt Λ_c^+ to D^0 cross-section ratios in pp and pPb

ALICE, PRC 107 (2023) 064901

- Charmed baryon-to-meson enhancement (wrt ee/ep) at lower p_T , consistent with color reconnection / coalescence / statistical hadronization models
- Shift of distribution peak towards higher p_T in pPb could be attributed to radial flow. Uncertainties (at low p_T) need to be reduced in future measurements

Λ_c^+/D^0 versus multiplicity in pp and pPb

- Increases rapidly with the increasing multiplicity in pp collisions
- Stays almost unchanged in pPb and semi-central PbPb
- Suddenly increases again in most central PbPb, precise Run3 measurement expected

Λ_c^+/D^0 versus multiplicity in forward rapidities

- Stays almost unchanged in pPb/Pbp and peripheral PbPb collisions, much larger than ee/ep, charm hadronization changed in forward rapidity as well
- Tension with values at mid-rapidity, since rapidity independence predicted
- More independent measurements are desired

Prompt $\Sigma_c^{0,++}$ to D^0 cross-section ratios in pp (a) 13 TeV

ALICE, PRL 128 (2022) 012001

- Λ_c^+/D^0 values almost energy independent
- $\Sigma_c^{0,++}/D^0$ production significantly enhanced, described by same models
- 40% Λ_c^+ from $\Sigma_c^{0,+,++}$ decays, enhanced feed-down contributes to Λ_c^+/D^0 enhancement

Prompt Ξ_c to D^0 cross-section ratios in pp and pPb

- Significant enhancement also in strange-charmed-baryon to D^0 ratios
- Even stronger than coalescence model predictions, pp/pPb consistent
- Values at forward rapidity systematically lower than mid-rapidity

Prompt D_s^+ to D^0 ratios in pp and pPb

- Consistent D_s^+/D^0 cross-section ratios in pp between forward and mid rapidities
- Independent of event multiplicity in pp collisions at mid-rapidity
- Consistent with PYTHIA8 calculations, CR mechanism almost does not affect this ratios

Prompt D_s^+ to D^+ ratios in pp and pPb

- Consistent D_s^+/D^+ cross-sections ratios in pp between forward and mid rapidities
- Significant enhancement at high multiplicity in pPb, in particular for low p_T
- Contradiction to the D_s^+/D^0 measurement in pp at mid-rapidity?

Prompt D^+ to D^0 ratios in pp and pPb

- Consistent D^+/D^0 values in pp between forward and mid rapidities
- Tension in pPb between forward and mid-rapidities
- At forward rapidities, clear hierarchy of D^+/D^0 ratios: pp > pPb > Pbp
- D^+/D^0 decreases with the increasing event multiplicity? More measurements expected

Bottom hadronization in pp

- Evidence of B_s^0/B^0 enhancement (at low p_T) in high multiplicity events
- A strong baryon enhancement of with multiplicity is observed
 - ▶ Ratio recovers e^+e^- value (QCD-vacuum) at low multiplicity
 - ▶ Ratio consistent with e^+e^- at high p_T

Summary & outlook

- pQCD well reproduces the energy/p_T/rapidity dependence of total charm/bottom productions
- Heavy flavor R_{pPb} measurements at mid/forward rapidities constrain cold nuclear matter effects: e.g. gluon nPDF at various x and Q^2
- *D* mesons R_{pPb} shows mild high p_T suppression at backward rapidity
- Charm and bottom hadronization modified in pp/pPb collisions (wrt ee/ep)
- Future precision measurements across different energies/size/rapidity ranges are essential to fully understand heavy flavor production in small system collisions