

Heavy flavor jets as probes of the QGP

Lida Kalipoliti (she/her) LLR, École Polytechnique

HF-HNC 2024, Guangzhou, China

8 December 2024

Heavy flavor jets

vs isolated HF hadrons

- Parton shower
- Hadronization
- q/g discrimination

In medium

- Penetrating probes
- ► $t(b,c) < t_0(QGP) \Rightarrow$ produced early
- ► m(b,c) ≫ T(QGP) ⇒ negligible QGP production

What do we know from b jets?

Lida Kalipoliti | LLR - École Polytechnique

b tagging

Depends on

- Displaced tracks
- Secondary vertices (SV)
- Charged leptons

Muon tagging

Depends on

- Displaced tracks
- Secondary vertices (SV)
- Charged leptons

b jet production at 2.76 TeV

b jet energy loss in medium (jet quenching)

Lida Kalipoliti | LLR - École Polytechnique

8 December 2024 6

R=0.3

b jet production at 5.02 TeV

$$R_{AA}^{b\text{-jet}} \equiv \left. \frac{1}{N_{\text{evt}}} \frac{\mathrm{d}^2 N_{AA}^{b\text{-jet}}}{\mathrm{d}p_{\text{T}} \mathrm{d}y} \right|_{\text{cent}} / \langle T_{AA} \rangle \frac{\mathrm{d}^2 \sigma_{pp}^{b\text{-jet}}}{\mathrm{d}p_{\text{T}} \mathrm{d}y} \quad \begin{array}{c} \text{ATLAS EPJC 83 (2023) 438} \\ \text{R=0.2} \end{array}$$

Larger R_{AA} = smaller energy loss

b jets are less quenched than inclusive

Lida Kalipoliti | LLR - École Polytechnique

b dijet asymmetry

$$x_{J} = p_{T}^{sub} / p_{T}^{lead}$$

Increased imbalance in central PbPb

⇒ another signature of jet quenching

b jet shape

Lida Kalipoliti | LLR - École Polytechnique

8 December 2024 9

PLB 844 (2023) 137849

R=0.4

What do we know from c jets?

Lida Kalipoliti | LLR - École Polytechnique

D⁰ tagging

Depends on

- D^0 from displaced K, π
- Prompt vs non-prompt

Lida Kalipoliti | LLR - École Polytechnique

Lida Kalipoliti | LLR - École Polytechnique

8 December 2024 12

D^o jet production in Au+Au at 200 GeV

 R_{CP} = central / peripheral

z-dependent energy loss in central Au+Au

Lida Kalipoliti | LLR - École Polytechnique

8 December 2024 **13**

Diptanil Roy's talk at HP2024 R=0.4

What's next?

Jet substructure!

Lida Kalipoliti | LLR - École Polytechnique

Exploiting the dead cone

ALICE Nature 605 (2022) 440-446

charged-particle jets

R=0.4

Employ jet declustering techniques to access directly the dead cone

Lida Kalipoliti | LLR - École Polytechnique

Exploiting the dead cone

dead cone angle θ_0 vs color decoherence angle θ_c

Casalderrey-Solana et al. PLB 725 (2013) 357

Cunqueiro, Napoletano, Soto-Ontoso PRD 107 (2023) 094008

Lida Kalipoliti | LLR - École Polytechnique

Exploiting the dead cone

CMS-PAS-HIN-24-005

Soft drop selects least collinear hard splitting **Late-k**_T selects most collinear hard splitting

CMS-PAS-HIN-24-007

Lida Kalipoliti | LLR - École Polytechnique

Energy-energy correlators

Transition from perturbative to non-perturbative

Anjali Nambrath's talk at HP2024

Lida Kalipoliti | LLR - École Polytechnique

Jet fragmentation function

Fraction of jet momentum carried by the hadron

Jochen Klein's talk at HP2024

Λ_c⁺, √s = 13.6 TeV

0.9

 Z_{\parallel}

Lida Kalipoliti | LLR - École Polytechnique

8 December 2024 19

Summary

HF jet identification

- HF hadron reconstruction
- Charged lepton

Tagging

Previously limited performance New possibilities with ML

HF jet energy loss

- Smaller than that of inclusive jets
- Imbalanced energy loss for dijets
- Redistribution of p_T out of the jet cone
- Larger loss for harder fragmentation

Missing pieces

- Modification of fragmentation (b hadron, baryon vs meson)
- Mechanism of energy loss at the constituent level Jet declustering (dead cone vs decoherence angle) EECs (shape, peak position)

Thank you!

Lida Kalipoliti | LLR - École Polytechnique