

Asymmetric jet shapes with 2D jet tomography

Hanzhong Zhang

Institute of Particle Physics, Central China Normal University

Based on *"YX Xiao, YY He, LG Pang, HZ Zhang, XN Wang, PRC109(2024)054906"*

Outline

 \Box Introduction

 \Box LBT transport model for γ -jets in HIC

Jet shape, \hat{q} gradient, asymmetry $A_N^{\vec{n}}$

 \Box Medium-modified jet shapes

Jet modifications via 2D jet tomography

Asymmetric jet shape due to \hat{q} gradient

 \Box Summary

Heavy-ion collisions

• Quark Gluon Plasma (QGP) produced in heavy-ion collisions.

- Jet quenching is an important probe to investigate QGP.
- Jet transport coefficient \hat{q} is a parameter of jet quenching.

$$
\hat{q}_a(x) = \sum_{bcd} \rho_b(x) \int d\hat{t} q_\perp^2 \frac{d\sigma_{ab \to cd}}{d\hat{t}}
$$

M. Gyulassy and M. Plumer, Phys. Lett. B 243, 432(1990)

The density is not uniform, so \hat{q} gradient tells the non-uniform spatial distribution of JQ strength.

2D jet tomography – A promising tool for jet modification

- **Longitudinal tomography to localize initial -jet positions along the jet propagating directions**
- Selections with hadron p_T : surface and volume emissions

Y. He, L.-G. Pang, and X.-N. Wang, Phys. Rev. Lett. 125 (2020) 12, 122301

- Transverse (gradient) tomography with an asymmetry $A_N^{\vec{n}}$ to localize initial γ -jet positions transverse to the jet directions
- \cdot The jet deviates from its initial direction due to \hat{q} gradient **perpendicular to the jet propagation direction** Hanzhong Zhang, HF-HNC 2024, Guangzhou 4

H.-Z. Zhang, J. F. Owens, E.-K. Wang, and X.-N. Wang, PRL103 (2009) 032302

Motivation - Asymmetric jet shapes: a new observable

- Relative to the propagation direction of the jet, $\left\{ \right.$ $p_T^{J'}$ localizes longitudinal positions, $\boldsymbol{A}^{\boldsymbol{n}}_{\boldsymbol{N}}$ localizes transverse positions
- Different selections of p_T^{jet} and $A_N^{\vec{n}}$ give 2D localizations, which help to understand the properties of the surface and deeper layers of QGP.

- The jet shape is expected to be modified due to the non-uniform JQ strength with different production positions of the jets.
- **Motivation - Medium-modified jet shape via longitudinal and transverse tomography. We find the jet shape is asymmetric.**

YX Xiao, YY He, LG Pang, HZ Zhang and XN Wang, PRC109(2024)054906

Model simulation of heavy ion collisions

Y. He, T. Luo, X.-N. Wang, and Y. Zhu, Phys. Rev. C 97 (2018) 1, 019902 S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, Phys. Rev. C 94 (2016) 1, 014909

The LBT model

Boltzmann transport equation:

 \sim

$$
p_a \cdot \partial f_a = \int \prod_{i=b,c,d} \frac{d^3 p_i}{2E_i (2\pi)^3} \frac{\gamma_b}{2} (f_c f_d - f_a f_b) |\mathcal{M}_{ab \to cd}|^2 \times S_2(\hat{s}, \hat{t}, \hat{u}) 2\pi^4 \delta^4(p_a + p_b - p_c - p_d) + \text{inelastic}
$$

$$
S_2(\hat{s}, \hat{t}, \hat{u}) = \theta(\hat{(s)} \ge 2\mu_D^2)\theta(-\hat{s} + \mu_D^2 \le \hat{t} \le -\mu_D^2), \quad \mu_D^2 = \frac{3}{2}g^2T^2 \quad \text{Y. He, T. Luo, X.-N. Wang, and Y. Zhu, } \\ \text{Phys. Rev. C 97 (2018) 1, 019902}
$$

Elastic:
$$
\Gamma_a^{el} = \frac{p \cdot u}{p_0} \sum_{bcd} \rho_b(x) \sigma_{ab \to cd} \quad \text{J. Auvinen, K. J. Eskola, and T. Renk, } \\ \text{Inelastic:} \quad \frac{d\Gamma_a^{inel}}{dzdk_\perp^2} = \frac{6\alpha_s P_a(Z)k_\perp^4}{\pi (k_\perp^2 + z^2 m^2)^4} \frac{p \cdot u}{p_0} \hat{q}_a(x) \sin^2 \frac{\tau - \tau_i}{2\tau_f} \\ \text{shower parton} \quad \text{radiation} \quad \text{J. Auvinen, K. J. Eskola, and T. Renk, } \\ \text{Inelastic:} \quad \frac{d\Gamma_a^{inel}}{dzdk_\perp^2} = \frac{6\alpha_s P_a(Z)k_\perp^4}{\pi (k_\perp^2 + z^2 m^2)^4} \frac{p \cdot u}{p_0} \hat{q}_a(x) \sin^2 \frac{\tau - \tau_i}{2\tau_f}
$$

X.-F. Guo, and X.-N. Wang, Phys. Rev. Lett. 85 (2000) 3591-3594 B.-W, Zhang, E.-K. Wang, and X.-N. Wang, Phys. Rev. Lett. 93 (2004) 072301

Jet shape of gamma-tagged jets

Jet shape definition :

 $\rho(r) =$ 1 Δr $\sum_{i}^{N} p_{T}^{i}(r - \Delta r/2, r + \Delta r/2)$ Σ^N_i p^{je}_{Ti} $\frac{\partial p_{T}(2,r+\Delta r/2)}{\partial z^{2}}$, $p_{T}^{i} = \sum_{assoc \in \Delta r} p_{T}^{assoc}$, $p_{Ti}^{jet} = \sum_{assoc \in [0,R]} p_{T}^{assoc}$

for the possibility density of transverse momentum distribution inside a jet cone.

- **Numerical results fit data well.**
- **Enhancement at the large-r region. Partially due to gluon radiation, but most of the enhancement is caused by the medium response.**

YX Xiao, YY He, LG Pang, HZ Zhang and XN Wang, PRC109(2024)054906

Spatial gradient of jet transport coefficient

 $\Delta E \propto \widehat{q}$

The jet transport coefficient \hat{q} :

$$
\hat{q} = \langle q_{\perp}^2/\lambda \rangle_a \approx C_a \frac{42\zeta(3)}{\pi} \alpha_s^2 T^3 \ln \frac{s^*}{4\mu_L^2}
$$

$$
T = T(x, y, z, \tau), s^* = 5.8E_0 T
$$

Y. He, T. Luo, X.-N. Wang, and Y. Zhu, Phys. Rev. C 91, 054908 (2015) X.-N. Wang, S.-Y. Wei, and H.-Z. Zhang, Phys. Rev. C 96, 034903 (2017)

JQ strength is not uniform.

The typical initial transverse position (y) shifts from the center to the outer region: transverse tomography Small A_N^y , traverse whole volume. Large A_N^y , emerge from surface areas, tangentially to the surface. Hanzhong Zhang, HF-HNC 2024, Guangzhou 10

-jet production rate as a function of initial jet locations, selected with A_N^y

-jet production rate as a function of y for initial jet locations, selected with $\overrightarrow{A_N^y}$

- Projections onto y-axis: final γ -jet rate as a function of y for initial jet positions, selected with A_N^y
- With A_N^y from 0 to 0.5, the peak of γ -jet production rate moves from the center to the outer corolla of the medium
- A_N^y can be used to select events and then **give the typical initial** γ **-jet positions**

γ -jet production rate as a function of A_N^y ,

with given initial transverse positions of γ -jets

- With given initial transverse positions of γ -jets from $y = 0$ to 5 fm, the peak of final γ -jet production rate moves with A_N^y from 0 to 0.5
- **Consistent with** A_N^y **localizations**. Asymmetry $A_N^{\mathcal{Y}}$ localizes initial positions of γ -jets which are **sources of final -jets**
- Hard parton transport tends to the dilute area due to JQ gradient, whereas soft transport towards the opposite, so jet reconstructions will be affected for the locations of initial jets

- $\rho(r)$ of AA larger than pp when $r > 0.1$: energy loss by hard partons at the core is transported to **larger angles by soft particles (radiated gluons and medium response).**
- **broader with small** $A_N^{\mathcal{Y}}$ than large $A_N^{\mathcal{Y}}$: small $A_N^{\mathcal{Y}}$ tells a center location, a long path and the strong **JQ, then a large-broadening jet shape.**

Modifications to jet shapes, with given initial transverse positions (via transverse tomography)

- Jets with initial central positions are more "broader" than with the outer corolla, consistent with A_N^y .
- **The broadening is caused by the jet-medium interaction. A slight suppression of the jet shape at the core r < 0.05 due to JQ.**
- **This lost energy is carried by radiated gluons and the medium-response to large angles.**

Modifications to jet shapes with p_T^{jet} : Longitudinal tomography

Medium-modified jet shapes

- small $A_N^{\mathcal{Y}}$ + small p_T^{jet} : volume emissions, "Fat" jet
- large $A_N^{\mathcal{Y}}$ + large p_T^{jet} : surface emissions, "Thin" jet
- **Others: large** $A_N^{\mathcal{Y}}$ + **small** p_T^{jet} , **small** $A_N^{\mathcal{Y}}$ + **large** p_T^{jet}

Asymmetric jet shape - Jet shapes divided by jet-axis and beam plane У↑ upper $\sum_{i}^{N} p_{T}^{i} (r - \Delta r/2, r + \Delta r/2) \Theta(+/- \vec{p}_{T}^{assoc} \cdot \vec{n})$ $\rho(r)_{upper/lower} = \frac{1}{\Lambda_1}$ jet axis $\sum_{i}^{N}p_{Ti}^{jet}$ Δr lower X **center jets** PbPb@5.02TeV 0-10% 10^{1} D_{tot} beam **corolla jets** ¹lower Ω Pupper $10⁰$ y in [-0.5, 0.5] (fm 1.6 $y \in [2.5, 3.5]$ (fm $\frac{1}{2}$ in 10.5, 1.51 (fm) y in [3.5.4.5] (fm) y in [-0.5, 0.5](fm) y in $[0.5, 1.5](fm)$ y in [1.5, 2.5](fm) 1.5 y in [1.5, 2.5] (fm) y in [4.5, 5.5] (fm) 1.4 p_T^{γ} > 60GeV $|\eta^{\gamma}|$ < 1.44 10^{1} $p_T^{\gamma} > 60$ GeV, $|\eta^{\gamma}| < 1.44$, anti – k_T jet R=0.3, $p_{\rm T}^{\rm jet}$ > 30GeV $|{\eta^{\rm jet}}|$ < 1.6 p_T ^{assoc} > 1GeV, $p_T^{\rm jet}$ >30GeV, $|\eta^{\rm jet}|$ <1.6 anti – k_T jet R = 0.3 $Δφ_{iv} > (7/8)π$ $p_T^{assoc} > 1$ GeV $\Delta\phi_{jy} > (7/8)\pi$ $\mathbf{\Omega}$ $10⁰$ 1.0 y in [3.5, 4.5](fm) y in [4.5, 5.5](fm) y in [2.5, 3.5](fm) 0.9 PbPb@5.02TeV 0-10% 0.1 0.2 0.2 0.2 0.1 0.1 0.8 0.00 0.05 0.10 0.20 0.25 0.15 YX Xiao, YY He, LG Pang, HZ Zhang and XN Wang, PRC109(2024)054906

The transverse momentum inside a jet cone is transported from small to large angles away from jet axis. **It is stronger in the lower cone than in the upper cone, especially for a corolla jet than a center jet** Hanzhong Zhang, HF-HNC 2024, Guangzhou 17

Asymmetric jet shape – energy distributions of hard and soft

 0.2

 $\overline{0}$

 -0.1

 -0.2

 -0.3

 -0.3

 $\Delta\phi$

 \rightarrow jet axis

 \mathbb{R}

 \boldsymbol{x}

• Such an asymmetric jet shape is more pronounced for the final γ -jets with a large A_N^y .

Asymmetric jet shape – angular energy distribution

Outer jets

- We study medium-modified jet shape via transverse and longitudinal tomography of γ -jets in heavy ion collisions.
- A broader jet shape is gotten with small A_N^y or p_T^{jet} from volume emissions, while a less broader jet shape with large A_N^y or p_T^{jet} from surface emissions.
- The spatial gradient of \hat{q} leads to an asymmetric jet shape of γ -jets. Inside a jet cone, medium "kick" or \hat{q} gradient pushes the hard transversely, while the soft is reversely redistributed.
- We have proposed a new physical observable: asymmetric jet shape, and are awaiting experimentalists to measure it to testing QCD and parton transport.

Thank for your attentions !