

Collisional Energy Loss of a Heavy Fermion in the Quark-Gluon Plasma

Yun Guo

Physics Department, Guangxi Normal University

➢ **Introduction**

- ➢ **Theoretical framework to compute HQ energy loss**
- ➢ **HQ energy loss in QGP:**
	- ⚫ **the influence of a nontrivial Polyakov loop**
	- ⚫ **the influnece of the collisions among medium partons**

➢ **Summary and outlooks**

References: Phys.Rev.D 109 (2024) , 114025 & Phys.Rev.D 110 (2024) , 034011

The 9 th International Symposium on HF Production, Guangzhou, 08-Dec.-2024

Introduction

HF spectra retain a memory of their interactions

- **Heavy Flavors(HF);**
- **Jets;**
- **Strangeness… …**

(PHENIX Collaboration, PRL 2007)

⚫ **produced at the early stage in the HIC**

⚫ **relaxation time comparable with the life time of the QGP**

Introduction

⚫ **Definition: the rate of energy loss per distance travelled**

$$
\left(-\frac{dE}{dx} = \frac{1}{v} \int_{M_Q}^{\infty} dE'(E - E') \frac{d\Gamma}{dE'}
$$

: interaction rate between the heavy quark and medium partons.

- ➢ **for light quarks: radiated energy loss dominates**
- ➢ **for heavy quarks: elastic energy loss becomes important (Wicks, Horowitz, Djordjevic and Gyulassy, NPA 2007)**

Braaten & Yuan, PRL 1991

for the t-channel: divergent when the exchanged momentum is infinitely small

• Hard contributions : $p \gg T$ and $M \gg T$

$$
-\left(\frac{dE}{dx}\right)^{Qq}_{\text{hard}} = \frac{8g^4N_f\pi}{3v} \int \frac{d^3\mathbf{k}}{(2\pi)^3} \int \frac{d^3\mathbf{k}'}{(2\pi)^3} n_F(k) \frac{\omega}{kk'} \frac{\delta(\omega - \mathbf{v} \cdot \mathbf{q})}{(\omega^2 - q^2)^2} \left[2(k - \mathbf{v} \cdot \mathbf{k})^2 + \frac{1 - v^2}{2}(\omega^2 - q^2)\right] \theta(q - q^*)
$$

⚫ **Soft contributions : HTL approximated resummed propagator**

$$
-\Big(\frac{dE}{dx}\Big)_{\rm soft}=\frac{g^2m_D^2}{8\pi v^2}\int_0^{q^\star}dq\int_{-vq}^{vq}d\omega\omega^2\Big[|\Delta_L(Q)|^2+\frac{1-\hat{\omega}^2}{2}(v^2-\hat{\omega}^2)|\Delta_T(Q)|^2\Big]
$$

$$
\text{min} \quad \text{min} \quad = \quad \text{min} \quad + \quad \text{min} \quad \text{min} \quad + \quad \text{min} \quad \text{min} \quad + \quad \text{min}
$$

- ⚫ **about the cutoff dependence**
	- ✓ **in general, the energy loss depends on the cutoff and needs to be evaluated numerically**
	- ✓ **the energy loss becomes more sensitive to the cutoff as the coupling constant increases**

Romatschke and Strickland, PRD 2004

the cutoff q^* **can be determined by using the minimal sensitivity,** *i.e.***, by minimizing the total energy loss with respect to** ∗

Braaten and Thoma, PRD 1991

 \checkmark the cancellation of the cutoff dependence happens in the limit $T \gg q^* \gg m_D$ and the **energy loss can be obtained analytically**

hard: logarithmic divergence \sim log(T/q^*) if $q^* \ll T$

soft: $\;$ logarithmic divergence \sim log($q^*/m_{\bar{D}}$) if $\;q^* \!\gg m_{\bar{D}}$

 \checkmark this is possible in the weak coupling limit since $m_p \sim gT$

- ⚫ **a new approach without introducing a cutoff Djordjevic, PRC 2006**
- ➢ **instead of a bare gluon propagator, using an effective gluon propagator, eg., the HTL resumed propagator to compute the squared matrix element (result is still gaugeinvariant for Qq scattering)**

$$
\Gamma(E) = \frac{1}{2E} \int \frac{d^3 \mathbf{p}'}{(2\pi)^3} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \int \frac{d^3 \mathbf{k}'}{(2\pi)^3} \frac{n_F(k)(1 - n_F(k'))}{8E'k k'} (2\pi)^4 \delta^4(P + K - P' - K') \left(\frac{1}{2} \sum_{\text{spins}} |\mathcal{M}|^2\right)
$$

- ➢ **there is no cutoff needed, therefore, don't differ the hard and soft scatterings**
- ➢ **there is NO divergence appears in the energy loss**

$$
-\left(\frac{dE}{dx}\right) = \frac{e^4}{4\pi^3 v^2} \int_0^\infty dk \, n_F(k) \left(\int_0^{2k/(1+v)} dq \, q^2 \int_{-vq}^{vq} d\omega \, \omega + \int_{2k/(1+v)}^{2k/(1-v)} dq \, q^2 \int_{q-2k}^{vq} d\omega \, \omega\right) \times \left[|\Delta_L(Q)|^2 f_1(k,q,\omega) + \frac{Q^4}{q^4} |\Delta_T(Q)|^2 (f_2(k,q,\omega) - f_1(k,q,\omega))\right], \tag{7}
$$

with
$$
\Delta_T(Q) = \frac{1}{Q^2 - \Pi_T(\hat{\omega})}, \qquad \Delta_L(Q) = \frac{1}{q^2 - \Pi_L(\hat{\omega})}
$$

⚫ **comparisons among the different methods**

⚫ **medium properties are very important to determine the collisional energy loss**

- ⚫ **how to describe the semi-QGP?**
- ✓ **rapid change of the thermodynamic properties corresponds to a phase transition from the normal hadronic phase to the QGP phase.**
- \checkmark for pure gauge theory, the order parameter of the deconfining phase transition is the **Polyakov loop which has a non-trivial dependence on the temperature**

HTL resummation theory can describe the lattice data down to ${\sim}3T_c$.

- ⚫ **the background field effective theory**
	- ✓ **to generate a -dependent Polyakov loop in the "semi"-QGP region, introduce a classical background field for the gauge potential.**

 $A_{\mu} = A_{\mu}^{\text{cl}} + gB_{\mu}$ with $(A_{\mu}^{\text{cl}})_{ab} = Q^{a}\delta_{ab}\delta_{\mu 0}$

✓ **the effective potential from the background field effective theory Hidaka and Pisarski, PRD 2021**

Meisinger, Miller and Ogilvieeldon, PRD 2002

- ⚫ **ingredients needed to compute the HQ energy loss**
	- ✓ **the distribution functions in the BF effective theory**

$$
\left(\begin{array}{ccc} n_B(q) & \stackrel{}{\Longrightarrow} & \frac{n_B^{+ab}(q)+n_B^{-ab}(q)}{2} \end{array}\right) \quad \text{ with } \left(\begin{array}{ccc} n_B^{\pm ab}(q) = \frac{1}{e^{\beta q \mp i \beta \mathcal{Q}^{ab}}-1} \end{array}\right)
$$

✓ **the HTL resumed gluon propagator in the BF effective theory**

off-diagonal components $SU(3)$ $\Delta_{\mu\nu}^{ab,ba}(Q, q) = \frac{1}{Q^2 + F_T(Q, q^a, q^b)} A_{\mu\nu} + \frac{\omega^4/Q^4}{\omega^2 + F_L(Q, q^a, q^b)} B_{\mu\nu} + \frac{\xi}{Q^4} Q_\mu Q_\nu$ 0.8 $\begin{bmatrix} 2 \ 2 \ 3 \end{bmatrix}$ 0.6 diagonal components 0.4 $\sum_{l} \mathcal{P}^{aa,bb} \Delta_{\mu\nu}^{aa,bb}(Q,\mathbf{q}) = \sum_{i=1}^{N-1} \left[\frac{1}{Q^2 + \Lambda_T^i(Q,\mathbf{q})} A_{\mu\nu} + \frac{\omega^4/Q^4}{\omega^2 + \Lambda_L^i(Q,\mathbf{q})} B_{\mu\nu} + \frac{\xi}{Q^4} Q_\mu Q_\nu \right]$ 0.2 1.0 1.5 2.0 2.5 3.0 3.5 T/T_{cl}

 \checkmark the $N^2 - 1$ gluons have the different screening masses

YG and Kuang, PRD 2021

✓ **the screening strength is weakened by the BF**

 \bullet analytical results of the t-channel contributions in the limit $T \gg q^* \gg m_D$

(using Braaten and Thoma's method)

➢Hard contributions

$$
-\left(\frac{dE}{dx}\right)_{\text{BF,hard}}^{Qg(t)} = \frac{2\alpha_s^2 T^2}{\pi} \sum_{n=1}^{\infty} \frac{|\text{Tr}\,\mathbf{L}^n|^2 - 1}{n^2} \left[f_1(v) \left(\ln \frac{T}{q^*} + \frac{1}{2} - \gamma - \ln n \right) + f_2(v) \right]
$$

for SU(3) *the divergent part*
$$
-\frac{2\alpha_s^2 T^2}{\pi} \sum_{n=1}^{\infty} \frac{|\text{Tr } \mathbf{L}^n|^2 - 1}{n^2} f_1(v) \ln q^* = -\frac{8\pi \alpha_s^2 T^2}{3} f_1(v) (1 - 3q)^2 \ln q^*
$$

➢Soft contributions

$$
-\left(\frac{dE}{dx}\right)_{BF,soft} = \frac{8\pi\alpha_s^2 T^2}{3} (1 - 3\mathsf{q})^2 \Big[f_1(v) \ln \left(q^*/m_D \right) - f_3(v) \Big] - \frac{\alpha_s}{24} f_1(v) \sum_{ab/\sigma/s} \left(\mathcal{M}_D^2 \right)^{ab/\sigma/s} \ln \left(\left(\mathcal{M}_D^2 \right)^{ab/\sigma/s} / m_D^2 \right)
$$

The cut-off dependence is cancelled between the hard and soft contributions which is independent on the explicit form of the BF ● numerical results q^* is determined by using the minimal sensitivity

(using Romatschke and Strickland's method)

results for SU(3) without dynamical quarks with $T_d = 270$ MeV and $\alpha_s = 0.3$.

- \checkmark the suppression is very significant in the entire semi-QGP region, the ratio is \sim 10% at the critical temperature.
- \checkmark the effects of the BF vanish very quickly as the temperature increases. Above $\sim 3T_d$, suppression becomes very weak.
- \checkmark in the ultra-relativistic limit, $v \to 1$, as well as in the weak coupling limit, the energy loss ratio is simply given by $(1-3q)^2$

ignoring a weak dependence on the heavy-quark velocity, the ratio can be simply approximated by $(1-3q)^2$ Could be important for phenomenological applications. ✓ **most applications of the HTL perturbation theory are limited in their assumption that collisions among plasma constituents are ignorable**

the time scale between hard collisions: the time scale between soft collisions:

Schenke, Strickland, Greiner and Thoma, PRD 2006

In high T limit: small coupling constant \checkmark **In semi-QGP: coupling increases** \checkmark

✓ **the systematic inclusion of collisions can be accomplished by using the effective kinetic theory**

linearized kinetic equations: a BGK-type collision term

$$
V \cdot \partial_X \delta f_a^i(\mathbf{p}, X) + g \theta_i V_\mu F_a^{\mu\nu} \partial_\nu^{(P)} f^i(\mathbf{p}) = \mathcal{C}_a^i(\mathbf{p}, X)
$$

$$
\text{with}\quad \begin{bmatrix} c_a^i(\mathbf{p}, X) = -\nu \Big[f_a^i(\mathbf{p}, X) - \frac{N_a^i(X)}{N_{\text{eq}}^i} f_{\text{eq}}^i(p) \Big] \end{bmatrix}
$$

 $\nu/m_D \approx 1.27 \alpha_s^{3/2} \ln(c + 0.25/\alpha_s)$

✓ **solving the kinetic equations for the fluctuations gives the induced current which determines the self-energy for the gauge bosons**

$$
\boxed{\Pi^{\mu\nu}(Q) = \frac{\delta J_{\text{ind}}^{\mu}(Q)}{\delta A_{\nu}(Q)}}
$$
 with
$$
\Pi_{L}(\hat{\omega}, \hat{\nu}) = \frac{m_D^2}{4} \hat{\omega} \left[2z + (z^2 - 1)\ln\frac{z - 1}{z + 1}\right]}
$$

$$
\Pi_{L}(\hat{\omega}, \hat{\nu}) = -\frac{m_D^2}{2} \frac{1}{\mathcal{W}(\hat{\omega}, \hat{\nu})} \left(2 + z \ln\frac{z - 1}{z + 1}\right)}
$$

$$
z=\hat\omega+i\hat\nu\equiv\omega/q+i\nu/q
$$

✓ **computing the matrix element for the Qq scattering with the resumed propagator modified by the BGK collisional kernel , then evaluate the energy loss**

One important reason to use this method to study energy loss:

no sharp transition from the soft process (using resumed propagator) to the hard process (using bare propagator) where the collision effects are completely go away.

is more significant when the incident velocity becomes large.

 \checkmark For small coupling constant, the corrections to $-dE/dx$ are at most ~ 5%

 \checkmark For a realistic coupling constant, the influence becomes moderate, and the corrections can reach ∼ 10%

magnitudes are strongly dependent on the parameterization of the collision rate.

⚫ **numerical results II**

 \checkmark The mass hierarchy of the collisional energy loss is also observed in a collisional plasma.

✓ The increase in −dE/dx of a charm quark is comparable to that of a bottom quark at large momenta.

 \checkmark A more significant correction for the bottom quark at large p, while the opposite is found for small p.

➢ **We review the theoretical approaches to compute the HQ collisional energy loss.**

➢ **Our results show:**

- HQ energy loss is reduced the semi-QGP. Near T_{c} , the reduction is very significant, **as compared to the perturbation theory, only ~10% of the energy loss obtained in the BF effective theory.**
- ⚫ **The BF suppression of the HQ energy loss is very sensitive to the temperature, beyond ~3T^c , the influence of the BF turns out to be negligible.**
- ⚫ **A moderate enhancement of the energy loss in a collisional plasma. Near T^c , , the corrections can reach ~10% for large incident velocities.**
- ⚫ **A more significant correction due to collisions among thermal partons for bottom at large momenta, for charm at small momenta.**

➢ **New paths forward for future work**

- ⚫ **Consider other physical observables based on the BF effective theory**,**eg. heavy quarkonia, Arxiv: 2412.XXXX**
- ⚫ **Full QCD calculation of the HQ energy loss with a BGK collisional kernel, contributions from Qg scatterings.**

Thank You for Your Attention

Backup

⚫ **double line notations**

$$
t^{ab})_{cd} = \frac{1}{\sqrt{2}} \mathcal{P}^{ab}_{cd} \,, \qquad \qquad \mathcal{P}^{ab}_{cd} = \mathcal{P}^{ab,dc} = \mathcal{P}_{ba,cd} = \delta^a_c \delta^b_d - \frac{1}{N} \delta^{ab} \delta_{cd} \,.
$$

For $SU(N)$ gauge theories, the color indices a, b, c and d run from 1 to N. There are $N^2 - N$ off-diagonal generators t^{ab} with $a \neq b$ which are the ladder operators of the Cartan basis. They are orthogonal to each other and normalized as $tr(t^{ab} t^{ba}) = 1/2$ with fixed a and b. The N diagonal generators are not independent, satisfying $\sum_{a=1}^{N} t^{aa} = 0$ and the normalization becomes $tr(t^{aa} t^{bb}) = (\delta^{ab} - 1/N)/2$ where no summation over a and b applies.

⚫ **Feynman rules**

$$
f^{ab,cd,ef} = \frac{i}{\sqrt{2}} (\delta^{ad} \delta^{ad} \delta^{ad} - \delta^{ad} \delta^{ad})
$$

• a general definition from quantum field theory Weldon, PRD 1983

$$
\begin{aligned}\n\left[\Gamma(E) &= -\frac{1}{2E} \text{Tr} \left[(P + M) \text{Im} \Sigma(P) \right] \\
&= -\frac{g^2}{4\pi^2 v} \int_0^\infty dq \, q \int_{-vq}^{vq} d\omega (1 + n_B(\omega)) \, \text{Im} \left[\Delta_L(Q) + (v^2 - \hat{\omega}^2) \Delta_T(Q) \right] \\
\text{with} \quad \Sigma(P) &= ig^2 C_F \int \frac{d^4Q}{(2\pi)^4} \Delta^{\mu\nu}(Q) \gamma_\mu \frac{1}{(P - Q) \cdot \gamma - M_Q} \gamma_\nu\n\end{aligned}\n\right]
$$
\n
$$
\text{resummed propagator} \quad \Delta_T(Q) = \frac{1}{Q^2 - \Pi_T(\hat{\omega})}, \qquad \Delta_L(Q) = \frac{1}{q^2 - \Pi_L(\hat{\omega})}, \qquad \hat{\omega} \equiv \omega/q
$$

⚫ **Soft contributions: basic formulas**

HTL approximated resummed propagator

$$
\left[-\Big(\frac{dE}{dx}\Big)_{\rm soft}=\frac{g^2m_D^2}{8\pi v^2}\int_0^{q^\star}dq\int_{-vq}^{vq}d\omega\omega^2\Big[|\Delta_L(Q)|^2+\frac{1-\hat{\omega}^2}{2}(v^2-\hat{\omega}^2)|\Delta_T(Q)|^2\Big]\right]
$$

Alternatively,

Thoma and Gyulassy, NPB 1991

Romatschke and Strickland, PRD 2004

$$
-\left(\frac{dE}{dx}\right)_{\text{soft}} = \frac{g^2}{v} C_F \operatorname{Im} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} (\mathbf{v} \cdot \mathbf{q}) v^i \left[\Delta_{ij}(Q) - (\Delta_0)_{ij}(Q)\right] v^j \theta(q^* - q) \Big|_{\omega = \mathbf{v} \cdot \mathbf{q}}
$$

✓ **for soft gluon exchange, it is necessary to use the resummation theory**

✓ **the HTL resumed gluon propagator should be used which regulates the infrared divergence in the t-channel**

HTL $\text{unit} = 0 \text{unit} + \cdots$

⚫ **hard contribution from the Weldon's formula**

\bullet **Hard contributions from Qg scattering (** $p \gg T$ and $M \gg T$) s- and u-channel

$$
-\left(\frac{dE}{dx}\right)_{\text{hard}}^{Qg(s+u)} = \frac{2\pi g^4}{v} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \int \frac{d^3 \mathbf{k}'}{(2\pi)^3} \frac{n_B(k)}{kk'} \delta(\omega - \mathbf{v} \cdot \mathbf{q}) \frac{\omega (1 - v^2)^2}{(k - \mathbf{v} \cdot \mathbf{k})^2}
$$

$$
= \frac{g^4 T^2}{12\pi} \left(\frac{1}{v} - \frac{1 - v^2}{2v^2} \ln \frac{1 + v}{1 - v}\right)
$$

- \triangleright contributions suppressed by T/M or T/p are dropped in the above expressions
- \triangleright in QED, suppressed by $(T/M)^2$ and can be ignored. No suppression in QCD.
- ➢ **for s- and u-channel contributions, no infrared divergence**
- \triangleright interference between t and u/s channel can be neglected in the assumption $T \ll M$

► Condition I: q^* \gg m_p soft contribution

$$
-\bigg(\frac{dE}{dx}\bigg)_{\rm soft} = \frac{g^2C_F}{2v^2}{\rm Im} \int_{-v}^v \frac{\hat{\omega} d\hat{\omega}}{(2\pi)^2}\bigg(\frac{v^2-\hat{\omega}^2}{(\hat{\omega}^2-1)^2} \Pi_T\ln\frac{q^{*2}(1-\hat{\omega}^2)+\Pi_T}{\Pi_T} + \Pi_L\ln\frac{q^{*2}-\Pi_L}{-\Pi_L}\bigg)
$$

expand the above result in the limit $q^* \gg m_D^{} ,$ it has a logarithmic divergence ~ $\log(q^*/m_D^{})$

 \triangleright Condition II: $q^* \ll T$ hard contribution

$$
\int d^3\mathbf{k} \int d^3\mathbf{k}' \longrightarrow 2(2\pi)^2 \int dk \int d\omega \int dq \qquad \qquad \boxed{}
$$

$$
\int_{\frac{1+v}{2}q^{\star}}^{\infty} dk \int_{q^{\star}}^{\frac{2k}{1+v}} dq \int_{-vq}^{vq} d\omega + \int_{\frac{1+v}{2}q^{\star}}^{\infty} dk \int_{\frac{2k}{1+v}}^{\frac{2k}{1-v}} dq \int_{q-2k}^{vq} d\omega + \int_{\frac{1-v}{2}q^{\star}}^{\frac{1+v}{2}q^{\star}} dk \int_{q^{\star}}^{\frac{2k}{1-v}} dq \int_{q-2k}^{vq} d\omega
$$

 $introducing q^*$ $\text{in} \int dq$, remove the infrared divergence in the limit $q^* \ll T (q^* \to 0)$, the above result has a logarithmic divergence ~ $\log(T/q^*)$

in the limit $T \gg q^* \gg m_D^{}$, the cutoff dependence is cancelled between the hard $\&$ soft *contributions, the total energy loss is finite and no cutoff dependence* ²⁴ ⚫ **one-loop result for the pressure with/without the BF**

$$
P_{\rm BF=0} = \sum_{ab} \frac{1}{3\pi^2} \int_0^\infty q^3 n_B(q) dq (1 - \delta_{ab}/N)
$$

$$
P_{BF \neq 0} = \sum_{ab} \frac{1}{6\pi^2} \int_0^\infty q^3 (n_B^{+ab}(q) + n_B^{-ab}(q)) dq (1 - \delta_{ab}/N)
$$

BF modified distribution function

$$
\begin{array}{c}\n n_B(q) \implies \frac{n_B^{+ab}(q) + n_B^{-ab}(q)}{2} \\
 \end{array}\n \quad\n \begin{array}{c}\n n_F(q) \implies \frac{n_F^{+a}(q) + n_F^{-a}(q)}{2} \\
 \end{array}
$$

with
$$
n_B^{\pm ab}(q) = \frac{1}{e^{\beta q \mp i\beta Q^{ab}} - 1}
$$
 $n_F^{\pm a}(q) = \frac{1}{e^{\beta q \mp i\beta Q^a} + 1}$ and $Q^{ab} \equiv Q^a - Q^b$

⚫ **however, the perturbation theory with BF**

- ➢ **predicts a system which always favors the complete QGP phase where BF=0, no phase transition could happen**
- ➢ **leads to a non-transverse gluon self-energy and an ill-defined screening mass**
- **to drive the system to the confined phase, one needs to consider effective theory with the background field.**

⚫ **basic formulas for the HQ energy loss with the BF**

 \triangleright Hard contributions from Qg scattering ($p \gg T$ and $M \gg T$)

$$
-\left(\frac{dE}{dx}\right)_{BF, hard}^{Qg(t)} = \frac{2\pi g^4}{v} \sum_{a,b=1}^3 \left(1 - \frac{1}{3} \delta^{ab}\right) \int \frac{d^3 \mathbf{k}}{(2\pi)^3 k} \frac{n_B^{+ab}(k) + n_B^{-ab}(k)}{2} \int \frac{d^3 \mathbf{k'}}{(2\pi)^3 k'} \delta(\omega - \mathbf{v} \cdot \mathbf{q})
$$

$$
\times \frac{\omega}{(\omega^2 - q^2)^2} \left[(k - \mathbf{v} \cdot \mathbf{k})^2 + \frac{1 - v^2}{2} (\omega^2 - q^2) \right] \theta(q - q^*)
$$

$$
-\left(\frac{dE}{dx}\right)_{BF, hard}^{Qg(s+u)} = \frac{\pi g^4}{4v} \sum_{a,b=1}^3 \left(1 - \frac{1}{3} \delta^{ab}\right) \int \frac{d^3 \mathbf{k}}{(2\pi)^3 k} \frac{n_B^{+ab}(k) + n_B^{-ab}(k)}{2} \int \frac{d^3 \mathbf{k}'}{(2\pi)^3 k'} \delta(\omega - \mathbf{v} \cdot \mathbf{q}) \frac{\omega (1 - v^2)^2}{(k - \mathbf{v} \cdot \mathbf{k})^2}
$$

$$
= \frac{g^4 T^2}{16\pi^3} \sum_{n=1}^\infty \frac{|\text{Tr } \mathbf{L}^n|^2 - 1}{n^2} \left(\frac{1}{v} - \frac{1 - v^2}{2v^2} \ln \frac{1 + v}{1 - v}\right)
$$

$$
n_B^{\pm ab}(q) = \frac{1}{e^{\beta q \mp i\beta \mathcal{Q}^{ab}} - 1} \qquad \mathcal{Q}^{ab} \equiv \mathcal{Q}^a - \mathcal{Q}^b
$$

BF acts as an imaginary chemical potential

➢ Soft contributions

$$
-\left(\frac{dE}{dx}\right)_{BF,soft} = \frac{g^2}{6v} \sum_{abcd} \mathcal{P}^{ab,cd} \operatorname{Im} \int \frac{d^3 \mathbf{q}}{(2\pi)^3} (\mathbf{v} \cdot \mathbf{q}) v^i \left[\Delta_{ij}^{ab,cd}(Q, \mathbf{q}) - (\Delta_0)_{ij}^{ab,cd}(Q)\right] v^j \theta(q^* - q) \Big|_{\omega = \mathbf{v} \cdot \mathbf{q}}
$$

zero temperature limit of $\Delta_{ij}^{ab,cd}(Q, \mathbf{q})$

results for SU(3) without dynamical quarks with $T_d = 270$ MeV and $\alpha_s = 0.3$.

the flavor dependence

Energy loss of a charm and bottom quark as a function of the momentum p . Energy loss ratio of a charm and bottom quark as a function of the momentum p .

 $p = \nu m_Q / \sqrt{1 - v^2}$

The results at higher temperature, eg., $T = 2.0T_d$ is qualitatively similar as what we found at $T = 1.1T_d$.

charm quark: $p \sim 5$ GeV, $v \sim 0.95$ bottom quark: $p \sim 15$ GeV, $v \sim 0.95$