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Heavy-ion Collisions and Jet Quenching Frowurs

Relativistic Heavy lon Collision hadronic phase o
QGP and d freeze-out
o Hydrodynamic expansion .an . 2l - Background
|n|£|a| statf o ey .-1: ‘;'":';;: "0;_. °
- - - . 2
The lifetime of the QGP fluid is very short.
000
pre-equilibrium

00000

p+p

energy loss: %—f, pr-broadening: % J

op Used as During the propagation and evolution in the QGP,
relerence the jet not only loses energy and momentum, but
also accumulates pp-broadening through medium-

Study QGP properties! induced radiation and scattering.
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Probing Intra-Broadening by Jet Substructures Froess
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Measurements seem to discard intra-jet broadening.
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Angle Between Jet Axes
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Angle Between Jet Axes Frasan
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s Features

® collinear/infra-red safety

® powerfully suppress the effect of soft radiation

The WTA axis is typically aligned with the most energetic components of the jet.
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® Narrowing of the AR,is distribution relative to the
vacuum case.

. . . e ® collinear/infra-red safety
® The narrowing may be explained if the Pb-Pb distribution

R R R R ® powerfully suppress the effect of soft radiation
is dominated by quark-initiated jets.

® The narrowing may be due to a selection bias.
. . ) . The WTA axis is typically aligned with the most energetic components of the jet.
® Measurements discard intra-jet pr broadening. d/15
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Motivation
® The fraction of quark-initiated jets increases after jet quenching, but it is o
far from dominant. 000

Pb-Pb
o5

quark jet fraction |p+p|Pb+Pb o
inclusive jets [33%| 45%
7" tagged jets |88%| 92%

Pb-Pb

00000
TABLE I: Estimation of quark jet fraction of inclusive jets and pir 2

Z° tagged jets in p+p and Pb+Pb collisions at leading-order p ’2 o
(LO), with jet radius R = 0.2, 40 GeV < pr et < 60 GeV. ’

Yan et al., CHIN. PHys. C 45, no.2, 024102 (2021)
AL ® What role does selection bias play?

® \Why were the measurements unable to detect intra-jet pr broadening? |
. . . L. . ® collinear/infra-red satety
® The narrowing may be explained if the Pb-Pb distribution powerfully suppress the effect of soft radiation
is dominated by quark-initiated jets. Y

® The narrowing may be due to a selection bias.
. . . . The WTA axis is typically aligned with the most energetic components of the jet.
® Measurements discard intra-jet pp broadening. 315
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Generate the event in pp collision,
without hadronization

Tnitial State Model
Caleulate the initial entropy deposition into
the soft medium and compute the positions
’,
P of the vertices for the initial hard processes
TRENTO 3D

- ~

Hydrodynamics Model

Provide the spatial and temporal

evolution information of the QGP
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_Music
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| i partons L =~

medium profile} o

Jot Quenching Model N

Simulate the evolution process of a jet parton in the hot and
dense QGP medium, describing the energy loss process of hard
jet partons due to their interaction with the thermal medium |
LINEAR BOLTZMANN TRANSPORT (LBT) 4

’

Jet and thermal partons hadro

_“_{- i T

(and hadrons decay)

LUND STRING

HICs

Statistical and analysis

’
pp used as
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Study QGP properties!
p + p baseline: PYTHIAS
T. Sjostrand et al., CompuT. PHYS. ComMUN. 191, 159 (2015)

Initial state: TRENTO 3D (averaged)
W. Ke et al., Puys. REv. C 96, no.4, 044912 (2017)

Partonic transport in the QGP: LBT
PLB 782 (2018) 707; PRC 98 (2018) 021901; PLB 777 (2018) 86;
PRC 94 (2016) 014909

Hydrodynamic evolution: MusIC
PRC 82, 014903 (2010); PRL 106, 042301 (2011); PRC 93, 044906
(2016)

Hadronization: COLORLESS
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LBT Model Frowgrt

Collisional

the phase space distribution of a jet parton a
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the sum of collision integrals for (|n)emw\ Y B
o]

PLB 782 (2018) 707-716; PRC 98 (2018) 021901; PLB 777 (2018) 86; PRC 94 (2016) 014909. 00000
For a hard parton a scattering with a thermal parton b via a specific channel
ab — cd,

e g T
F;Hd:—%i / [T dlpilfs(Ee, T)Sa(5, £ @) (2m)*6W [ Mapseal” . (2)
a i=bc,d

Jet transport coefficient:
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LBT Model — Radiative Eloss Mechanisms

The inelastic scattering rate relates to the average number of emitted gluons from
parton a per unit time,

rinel(p, T 1) = 1 / dzdk? ANy (4)
S Tddk? dt’
The medium-induced gluon spectrum is taken from the high-twist energy loss
calcumation, PRL 85 (2000) 3591, PRL 93 (2004) 072301, PRD 93 (2004) 072301.

the parton transport coefficient the vacuum splitting function

l the production time of parton a

. ’ |
AN 2Ca0sGa PR(2) kI (4 — 4
== S111 s —
dzdkidt 7r(l;"2+ z277f2) QTf
the transverse mom(‘ntu]m of the ¢mitted|gluon

the mass of parton a
the fractional energy of the emitted|gluon p
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Model Validation

Event Selection

® Reconstructed from tracks with
PT,track > 0.15 GeV, |77| <0.9

® Using the anti-k; algorithm with E-scheme

recombination for resolution parameters
R=02
® 40 < PT jet < 60 GeV, |77jet| < 0.7.

-10% and pp ARx};A*Slanda
T L

do
T dARqyis

Charged particle jets, anti-kt

1

—+— LBT Ch+et pos

Pb-Pb/pp

Figure: Distributions of the angle AR,is in p+p and
Pb+Pb collisions.
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Model Validation Fromins
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recombination for resolution parameters E 40 < P 2 60 Gev /e E Vaildation
R=0.2 E R =02, |l <07 O
® 40 < pr jet < 60 GeV, |njet| < 0.7. X o000
of— o
V" The angle between the Standard and N 1,55_4L
WTA jet axes is not sensitive to the s 1.05
medium response, at least when E
R=0.2. 0o
000

V" Reasonably describe the experimental
data in both p+p and Pb+Pb collisions
and the PbPb/pp ratio. Figure: Distributions of the angle AR,is in p+p and

Pb-+Pb collisions.
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Selection Bias in Jet Quenching
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Figure: Schematic diagram of the selection bias due
to jet energy loss that may occur when selecting
jets based on the their transverse momentum.
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Selection Bias in Jet Quenching Frohrn
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[ // 1 i 1 ' ‘\y“b by spectively, and the closest one is °
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Figure: Schematic diagram of the selection bias due
to jet energy loss that may occur when selecting ® Quenched : |-+l ARX1v:2009.03316 [hep-ph]
jets based on the their transverse momentum.

First Select, then Quench. So called “Select-then-Quench” (STQ).
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Influence of Selection Bias Fromins

Conclusions:
g pFr— T T —— T T o
€ BE S-SRV -4- PYTHIAS pp E ® The ARaxis distribution of STQ (PbPb)
3 £ Charged-particle jets, anti-k; LBT PbPb 0-10% ! N R
= sof —— Pyruaspp,STQ shows evident broadening compared to
z sb —— LBTPbPb 0-10%, STQ that of STQ (pp).
E, ,E ) 1

2f WIAStandard ] !t means the erts get broader b)_/ the

15E 40 < pM L g0 Gev/e interactions with the QGP medium

10; R =02,y <07 E compared to their initial structures.

5; é [e] lelele]

of 2 A Attention:
= 19F E ® The modification patterns of STQ results
Ej LOfF 3 are inverse to the normal theoretical
£ 05 3 calculation (and experimental), while the

Y RO B U R B latter contains the effect of selection bias.
0.00 0.02 0.04 0.06 0.08 0.10
ARayis ® We can conclude that the selection bias
ARXI1V:2312.15518 [hep-ph] covers the real intra-jet-broadening nature

Figure: Normalized A R.is distribution of the and leads to the narrowing modification of
selected jet samples in p+p and Pb+Pb collisions. ARaxis distribution.
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Influence of Increased Quark-Jets Frisns

A The STQ method obscures the quark-initiated jets increase effect that existed in o
experiments or conventional Monte Carlo studies.
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Influence of Increased Quark-Jets F 08 g xx

A The STQ method obscures the quark-initiated jets increase effect that existed in o
experiments or conventional Monte Carlo studies. .
P A B e A oo
I V3 =5.02 TeV --t-- PYTHIAS Inclusive Jet
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> PYTHIAS Gluon-Jet 1 000
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050, o e e T
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Figure: Normalized AR,is distributions of the
quark-jets, gluon-jets and inclusive jets in p+p and
Pb+Pb collisions. ARX1V:2312.15518 [hep-ph]
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Influence of Increased Quark-Jets F 08 g xx

A The STQ method obscures the quark-initiated jets increase effect that existed in o
experiments or conventional Monte Carlo studies. .
Conclusions:
é 40F ‘\/E‘: sy L ‘Pv‘rm‘As‘Incl‘usi\‘/e]‘et’; . . Lo 2
3 5L Charged particl jets, anti-k 4 Lothdusivelet ® The quark-jets exhibit a narrower initial
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z E LBT Gluon-Jet 3
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Figure: Normalized AR,is distributions of the
quark-jets, gluon-jets and inclusive jets in p+p and
Pb+Pb collisions. ARX1V:2312.15518 [hep-ph]
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Influence of Increased Quark-Jets

A The STQ method obscures the quark-initiated jets increase effect that existed in

experiments or conventional Monte Carlo studies.
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Figure: Normalized AR,is distributions of the

quark-jets, gluon-jets and inclusive jets in p+p and

Pb+Pb collisions.

ARX1v:2312.15518 [hep-ph]

Conclusions:

® The quark-jets exhibit a narrower initial
A Raxis distribution than the gluon-jets

® In Pb+4Pb collisions, both the quark-jets
and gluon-jets become narrower than in
p+p

In p+p collisions, the fractions of quark-initiated
jets and gluon-initiated jets are 36.7% and 63.3%,
respectively.

If the angular distance between a and ji is less than
that between b and j1, we identify j; as a gluon-jet.
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Influence of Increased Quark-Jets Fromins

—— LBT ]
—+— LBT (recover q/8) |

o 40 T T

o /5 =5.02TeV ALICE pp

g 35 Charged particle jets, anti-k; ALICE PbPb

3 ]
2 % 1= pp E
z

<

20 WTA-Standard | .
15 0< R Cgocevse ] Conclusions:
R =02, e <07 1 . . .
0E, E ® The calculations with rescaled fractions
5 E do not significantly differ from the
0 normal LBT calculations 00080

The decreased gluon-jet fraction is not
the main reason that leads to a
N narrowing A Raxis distribution of

002 004 0.06 008 0.10 inclusive jet in Pb+Pb collisions

|

Pb-Pb/pp
5 &

1

L]

0.5

=4
o
S

ARaxis
ARX1v:2312.15518 [hep-ph]
Figure: The LBT calculations of AR,is distributions in
Pb+Pb collisions with recovered quark/gluon-jet frac-
tions are compared with the normal LBT calculations
and the ALICE data.
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Matched UnQuenched Jets
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Figure: The AR,yis distribution of the selected jet
sample with pr between 40 and 60 GeV in Pb+Pb
collisions is compared to its initial counterpart, de-
noted as pp (matched), and that selected in p+p
collisions.

—— T —
V5 =502 TeV ALICE pp, [40, 60]
Charged particle jets, anti-k; ALICE pp, [60, 80]
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Figure: Distributions of the AR,is of inclusive jets
calculated by the PYTHIA in p+p collisions within
two different pp intervals, and compared to the AL-
ICE data.
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Matched UnQuenched Jets

ch jet R =02, ] <07
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Q Conclusions |

® The pp (matched) has a significantly narrower distribution than the p+p

® The jet sample selected in A4A collisions after jet quenching usually has higher initial pr,
while the one with higher pr usually has narrower A R,xis

® The biased comparison between p+p and A+4A conceals the actual intra-jet-broadening effect
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Summary Froess

Highlights 0

® Utilizing a matching-jet method to track the jet evolution in the QGP to remove the selection
bias in the Monte Carlo simulations, we observe that the A R,xis distribution becomes .

broader due to the jet-medium interactions
000

® By rescaling the quark/gluon-jet fractions in Pb+Pb collisions to be the same as that in p+p,

we find that the fraction change may not significantly influence the modification pattern of o
jet A Raxis
00000
® The selected jet sample in A+A collisions has a significantly narrower initial A Raxis SRy
distribution than the p+p baseline, and such a biased comparison between p+p and A+A °

conceals the actual jet-broadening effect in the experimental measurements

® Use Z/~-tagged jets to study the medium modification of the jet axis angle in heavy-ion
collisions, thereby reducing the jet selection bias and including nPDF effects

Thank you for your attention!
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