Heavy Quarkonium Photoproduction in Ultra-Peripheral Collision

Zaochen Ye (SCNU)

Understand Nucleon Structure

What is the fate of gluons at extreme densities toward the unitary limit?

Ultra-Peripheral Collision (UPC)

- Lorentz contracted EM fields \rightarrow flux of quasi-real photons (Q²< \hbar^2/R^2)
- The photon flux $\propto Z^2$
- Photon kinematics: $p_T < \hbar/R_A \sim 30$ MeV ($E_{max} \sim 80$ GeV) at LHC

Heavy ion collider is also a Photon-Photon and Photon-Ion collider !!!

Quarkonium (e.g., J/Ψ) photoproduction directly probes gluonic structure of nucleus/nucleon

At LO in pQCD, cross section ~ photon flux $\otimes [xG(x)]^2$

Quarkonium (e.g., J/Ψ) photoproduction directly probes gluonic structure of nucleus/nucleon

At LO in pQCD, cross section ~ photon flux $\otimes [xG(x)]^2$

Coherent production:

- Photon fluctuated dipole couples coherently to entire nucleus
- Target nucleus remains intact
- VM <p_> ~ **50 MeV**
- Probing the averaged gluon density

Quarkonium (e.g., J/Ψ) photoproduction directly probes gluonic structure of nucleus/nucleon

At LO in pQCD, cross section ~ photon flux $\otimes [xG(x)]^2$

Coherent production:

- Photon fluctuated dipole couples coherently to entire nucleus
- Target nucleus remains intact
- VM <p_> ~ **50 MeV**
- Probing the averaged gluon density

Incoherent production:

- Photon fluctuated dipole couples to individual nucleon or sub-nucleon
- Target nucleus usually breaks
- VM <p_T> ~ 500 MeV
- Probing the local gluon density and fluctuations

Quarkonium (e.g., J/Ψ) photoproduction directly probes gluonic structure of nucleus/nucleon

At LO in pQCD, cross section ~ photon flux $\otimes [xG(x)]^2$

Coherent production:

- Photon fluctuated dipole couples coherently to entire nucleus
- Target nucleus remains intact
- VM <p_> ~ **50 MeV**
- Probing the averaged gluon density

Incoherent production:

- Photon fluctuated dipole couples to individual nucleon or sub-nucleon
- Target nucleus usually breaks
- VM <p_T> ~ 500 MeV

 ω

• Probing the local gluon density and fluctuations

$$=rac{M_{VM}}{Za^2}e^{\oplus y}$$
 $x=rac{M_{VM}}{2\sqrt{4s_{
m NN}}}e^{\oplus y}$ $W_{\gamma
m p}=1$

Coherent J/ Ψ Photoproduction via γ + p (Free Nucleon)

 $\gamma + p \rightarrow J/\psi + p$

 Data from LHC and HERA follow a common power-law trend, consistent with the expectation from the rapidly increasing gluon density in a proton

No clear indication of gluon saturation, even down to x~10⁻⁵ in a free nucleon!

Advantages of Gluon Saturation Search in Nucleus

Gluons is **enhanced** by a factor of $A^{1/3}$ in **nucleus** compared to what in free nucleon

$$Q_{\rm s}^2 \sim A^{1/3} \left(\frac{1}{x}\right)^{\lambda}$$

• Gluon saturation is expected to be more easily reached in heavy nuclei

Coherent J/ Ψ Photoproduction in A-A UPCs

CMS: PRL 131, 262301 (2023) LHCb: JHEP 06 146 (2023)

 Strong suppression, but the rapidity distribution was a puzzle

Coherent J/ Ψ Photoproduction in A-A UPCs

CMS: PRL 131, 262301 (2023) LHCb: JHEP 06 146 (2023)

Two-Way Ambiguity in A-A UPC

This ambiguity exists for both coherent and incoherent processes

Two-Way Ambiguity in A-A UPC

This ambiguity exists for both coherent and incoherent processes

Method to Solve Two-Way Ambiguity in A-A UPC

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

• Control/select the impact parameter of UPCs via forward emitted neutrons

Neutron emission via EMD with additional photon exchange:

- Soft photons (energy ~10s MeV)
- Independent of interested physics process
- Large cross section ~200 b (single EMD)
- The smaller b → the more neutrons

• Analogous to centrality:

• $\mathbf{b}_{XnXn} < \mathbf{b}_{0nXn} < \mathbf{b}_{0n0n}$ in UPC

Method to Solve Two-Way Ambiguity in A-A UPC

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

• Control/select the impact parameter of UPCs via forward emitted neutrons

Coherent J/ Ψ Cross Section of Per γ +Pb

CMS: PRL 131, 262301 (2023) ALICE: JHEP 10 119 (2023)

Data show:

- Rapid increase at W < 40 GeV
- Turn into a nearly flat (slower rising) trend for W > 40 GeV

Strongly saturated cross sections

Coherent J/ Ψ Cross Section of Per γ +Pb

CMS: PRL 131, 262301 (2023) ALICE: JHEP 10 119 (2023)

Data show:

- Rapid increase at W < 40 GeV
- Turn into a nearly flat (slower rising) trend for W > 40 GeV
- y distribution puzzle is solved by studying the W dependence
- Strong suppression

Strongly saturated cross sections

Coherent J/ Ψ Cross Section of Per γ +Pb

CMS: PRL 131, 262301 (2023) ALICE: JHEP 10 119 (2023)

Data show:

- Rapid increase at W < 40 GeV
- Turn into a nearly flat (slower rising) trend for W > 40 GeV
- y distribution puzzle is solved by studying the W dependence
- Strong suppression

Strongly saturated cross sections

Nuclear shadowing?

Zaochen Ye (叶早晨) at HF-HNC 2024

See Jani Penttala's talk

How About Incoherent J/ Ψ Photoproduction?

Coherent production:

- Photon fluctuated dipole couples **coherently to entire nucleus**
- Target nucleus remains intact
- VM <p_T> ~ **50 MeV**
- Probing the averaged gluon density

Incoherent production:

- Photon fluctuated dipole couples to individual nucleon or sub-nucleon
- Target nucleus usually breaks
- VM <p_T> ~ **500 MeV**
- Probing the local gluon density and fluctuations

Fluctuating Gluons Probed via γ +p

CGC IPsat considering the **fluctuations** of **geometry** (shape and size), **energy density**, **local saturation scale** and **color charge**, successfully describe the HERA data

CGC IPsat is impact parameter dependent saturation model under the Color-Glass Condensate framework

Fluctuating Gluons Probed via Incoherent γ+Au/Pb

CGC: PRD 109 (2024) 7, L071504 ALICE: PRL 132, 162302 (2024) STAR: PRC 110 014911 (2024) t distribution from STAR: well described by LTA, but in between two scenarios of CGC with and without sub-nucleonic fluctuations

t distribution from ALCIE: slope is well describe by CGC with sub-nucleonic fluctuations however, missed by a common scaling factor

Fluctuating Gluons and Energy Dependence

How the fluctuating gluons evolute, especially towards small-x limit?

- Would incoh. production **vanish** if **black disk limit is reached**?
- \circ Unfortunately, energy-dependent incoh. J/ Ψ has never been measured

Solve "Two-Way Ambiguity" via Forward Neutrons

J/Ψ-Xn (Same Direction)

J/Ψ-Xn (Opposite Direction)

V. Guzey, M. Strikman, M. Zhalov, EPJC (2014) 72 2942

Incoh. J/Ψ photoproduction itself has ~85% chance to induce the forward neutrons
 → Detecting these neutrons will identify target nucleus
 → Help to solve the "Two-Way Ambiguity"

Incoh. J/ Ψ Cross Section Per γ +Pb

CGC: PRD 109 (2024) 7, L071504, PRD 106 (2022) 7, 074019 LTA: V. Guzey et al. PRC 108 (2023) 024904, PRC 99 (2019) 015201 ALICE: EPJC 73 (2013) 2617

- First energy-dependent measurement of incoherent J/Ψ photoproduction
 - Strongly saturated trend again
- Strong suppression compared to Impulse Approximation (IA)
- LTA (nuclear shadowing) describe data at W < 60 GeV
- CGC without sub-nucleonic fluctuations better describe data at W > 90 GeV

Cross Section Ratio of Incoh./Coh. J/ Ψ

Theoretical uncertainties from VM wave function, nuclear density, nuclear form factor, free nucleon PDFs, photon flux, and J/ Ψ formation probability are largely canceled.

Cleanest test for theoretical assumptions on nuclear effects

Nuclear Suppression Factor

 $S^{J/\psi}$

Coh: CMS, PRL 131, 26201 (2023); ALICE, JHEP 10, (2023) 119

$$S_{\rm coh}^{\rm J/\psi}(x,\mu^2) = (R_g)^2$$

No nuclear effects

 Both Coh and Incoh J/Ψ show stronger suppression towards lower x, and eventually flattens out

γPb→J/ψPb′

 $\gamma Pb \rightarrow I/\psi Pb$

- Incoh. is **more suppressed** than Coh. J/Ψ
- Incoh. J/ Ψ get closer to Coh. J/ Ψ for $x < 10^{-4}$
- No models can describe the data

Summary

- Both Coh. and Incoh. J/Ψ photoproduction in UPCs are observed to be strongly saturated at high energy
- Probing nuclear gluonic structure **over broad** *x* **interval**: **10**⁻² **10**⁻⁵
 - At scales of nucleus (coh.) and nucleon (incoh.)
- Ratio of Incoh/Coh J/ Ψ stay constant ~0.3-0.5 for 40 < W < 400 GeV
 - Sub-nucleonic fluctuations are needed to describe data
 - Not support that black disk limit is reached
- **Nuclear suppression** factor of J/ Ψ photoproduction via γ +Pb interaction:
 - Stronger towards lower *x*, eventually flattens out
 - o Incoh. J/ Ψ is **more suppressed** than Coh. J/ Ψ photoproduction
- Theoretical models (saturation or shadowing) **only occasionally describe partial** measured observables
 - Significant theoretical improvements are needed

Future Opportunities

 $x vs. Q^2 vs. Q_s^2$

Various VMs in different nucleus-nucleus UPCs with neutron taggings:

- Coherent and Incoherent productions
- Control of dipole sizes and hard scales.
- Test on the A dependences
- Variation of **saturation scales**

$PbPb \qquad L_{int} = 13 \text{ nb}^{-1}$							A Ph		
	σ	All	Central 1	Central 2	Forward 1	Forward 2		A Xe/Kr	Ar/O
Meson		Total	Total	Total	Total 1	Total			
$\rho \to \pi^+\pi^-$	5.2b	68 B	5.5 B	21B	4.9 B	13 B	· · · · · · · · · · · · · · · · · · ·	VS T	
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B		vs. vs.	~Å
$\phi \to \mathrm{K}^+\mathrm{K}^-$	0.22b	2.9 B	82 M	490 M	15 M	330 M	4	 A 	` 🦻
${ m J}/\psi o \mu^+\mu^-$	1.0 mb	14 M	1.1 M	5.7 M	600 K	1.6 M		~/	
$\psi(2S) \to \mu^+ \mu^-$	30µb	400 K	35 K	180 K	19 K	47 K		••••	System size scan
$Y(1S) ightarrow \mu^+ \mu^-$	$2.0 \ \mu b$	26 K	2.8 K	14 K	880	2.0 K	V		

CERN Yellow Report, arXiv:1812.06772

Thanks for your attention! Welcome to Guangzhou!

Backup Slides

Exlusive Upsilon(1S) via γ +p Interactions

CMS and ALICE data follows the same trend

Photon Flux: Point-like vs. Realistic

CPC 277 (2022) 108388

Figure 4: (Color online) Photon fluxes coming from a nucleus $N_{\gamma A}$ in the point-like source approximation and the realistic description as functions of impact parameter b_{γ} calculated at different photon energies: 100 MeV (a), 100 GeV (b).

QED Dimuon with Neutron Tagging at CMS

First direct evidence of b-dependent initial photon p_T, set strong base line for observe QGP EM effects in heavy ion collisions

Example of Signal Extraction (OnXn)

- No correlation between forward neutrons and coh. production
- Strong correlation between forward neutrons and incoh. production

Total InCoh. J/ Ψ Photoproduction Cross Section

Future Opportunities

