

Measurements of Y and very low $p_{\rm T}$ J/ ψ production in Au+Au collisions at $\sqrt{S_{\rm NN}}$ = 200 GeV at STAR

Ziyang Li (for the STAR Collaboration)

State Key Laboratory of Particle Detection and Electronics,

Department of Modern Physics,

University of Science and Technology of China

Quarkonium

- Early creation: heavy quarks created in initial hard scattering, experience the entire evolution of the QGP.
- Dissociation: suppression of quarkonium yield, direct evidence of the QGP formation.
- Regeneration: compete with dissociation.
- Other effects: feed-down, Cold Nuclear Matter effects (nPDF, Nuclear absorption...), etc.

Larger production cross section

 $r_{q\bar{q}} \sim 1/E_{binding} > r_D \sim 1/T$

Negligible regeneration

 Compared to charmonia, bottomonia are cleaner probes

Quarkonium sequential suppression

- Hint of stronger suppression for Y(2S+3S) compared to Y(1S)
 ➢ Significance less than 1.5σ
- Differential measurements with improved precision are crucially needed.

STAR detector

Signal extraction

- Unbinned maximum-likelihood simultaneous fit to unlike-sign and like-sign mass distributions
- Template of each Y state: embedding sample
- > Residual background ($b\overline{b}$ + Drell-Yan): Pythia 6
- Combinatorial background: modeled with exponential function 2024-12-9

Centrality dependence of R_{AA}

- Significant suppression for different Y states is observed
- Suppression gradually increase towards central collisions
- The results are consistent with sequential suppression pattern

STAR, Phys. Rev. Lett. 130 (2023) 112301

Comparison with LHC results

- Y(1S) exhibits a similar magnitude of suppression at the LHC and RHIC collision energies
- Hint of less suppression of Y(2S) at RHIC in peripheral collisions
- No significant $p_{\rm T}$ dependence is observed

CMS, Phys. Lett. B 790 (2019) 270-93

Comparison with models

 Transport model: dissociation + regeneration + feed-down + CNM X. Du et al. Phys. Rev. C 96 (2017) 054901. Coupled Boltzmann equations: elastic and inelastic scatterings + correlated regeneration + CNM X. Yao et al. JHEP 01 (2021) 046.

OQS+pNRQCD: dissociation +

JHEP 05 (2021) 136. arXiv 2205.10289 (2022).

regeneration + feed-down

N_{coll} uncertainty

.....

N____ uncertainty

8

6

10

Heidelberg model: gluon-induced dissociation + feed-down.

J. Hoelck et al. Phys.Rev. C 95 (2017) 024905

Part #2

Measurements of very low $p_{\rm T}$ J/ ψ via dimuon decay channel

Photon-induced process

$$n \propto \vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B} \approx |\vec{E}|^2 \approx |\vec{B}|^2$$

• Large quasi-real photon flux $\propto Z^2$

Photon production with nuclear overlap

- Significant enhancements of the J/ ψ production at very low p_T observed by the ALICE and STAR collaboration in peripheral collisions.
 - Weaker centrality dependence.
 - Consistent with coherent photon-nucleus interactions.

ALICE, Phys. Rev. Lett. 116, 222301 (2016).

STAR, Phys. Rev. Lett. 123, 132302 (2019).

$J/\psi \rightarrow \mu^+\mu^-$ signal extraction

- Fit unlike sign distribution with maximum likelihood method: Signal + combinatorial background + residual background.
- Template of J/ψ : embedding sample
- Residual background: exponential function
- Combinatorial Background: mixed event technique

$J/\psi \rightarrow \mu^+\mu^-$ invariant yield and R_{AA}

- A large enhancement of the J/ ψ yield at low p_T in peripheral collisions
- Show same trend with dielectron channel results

$J/\psi \rightarrow \mu^+\mu^-$ t distribution

- The expected hadronic contributions are subtracted.
- Resembling the structure observed for J/ψ in Au+Au UPC at 200 GeV [1].
- The slope parameter is 153 ± 55 (GeV/c)⁻², consistent with the e⁺e⁻ channel results, 177 ± 23 (GeV/c)⁻²
- The first data point is significantly lower than the extrapolation of the exponential fit
 - Indication of interference

[1] STAR, Phys. Rev. C 110, 014911 (2024)

$J/\psi \rightarrow \mu^+\mu^-$ excess yield

EPA: W. Zha et.al., Phys. Rev. C 99, 061901 (2019)

- No obvious centrality dependence
- Excess yield consistent with equivalent photon approximation (EPA) calculation
 - In EPA calculation, the photon emitter is the whole nucleus and the Pomeron emitter is spectator nucleons

Summary

- Different Y states are measured separately in Au+Au collisions at $\sqrt{S_{NN}}$ = 200 GeV.
 - > Y(1S) has a similar magnitude of suppression as observed in LHC Pb+Pb collisions at $\sqrt{S_{NN}} = 5.02$ TeV.
 - > No significant $p_{\rm T}$ dependence is observed.
 - > Different model calculations consistent with data within the uncertainties.

- Measured very low p_{T} J/ ψ production via the dimuon channel.

> Significant J/ ψ enhancements at very low $p_{\rm T}$ are observed.

> The EPA-QED calculations can describe data, indicating the enhancements at very low $p_{\rm T}$ originate from photon-induced interactions.

Summary

- Different Y states are measured separately in Au+Au collisions at $\sqrt{S_{NN}}$ = 200 GeV.
 - > Y(1S) has a similar magnitude of suppression as observed in LHC Pb+Pb collisions at $\sqrt{S_{NN}} = 5.02$ TeV.
 - > No significant $p_{\rm T}$ dependence is observed.
 - > Different model calculations consistent with data within the uncertainties.
- Measured very low $p_{\rm T}$ J/ ψ production via the dimuon channel.
 - > Significant J/ ψ enhancements at very low $p_{\rm T}$ are observed.
 - > The EPA-QED calculations can describe data, indicating the enhancements at very low $p_{\rm T}$ originate from photon-induced interactions.

Thank you