イロト イ母 トイヨ トイヨ トー

 298

How well does nonrelativistic QCD factorization work for inclusive quarkonium production at NLO?

Xiang-Peng Wang (TUM)

Nora Brambilla & Mathias Butenschön arXiv: 2411.16384

HF-HNC 2024,

China Hotel, Guangzhou

06 -11 Dec. 2024

 \rightarrow \rightarrow \rightarrow

4 D.K.

 298

Outlines

[1. Review of inclusive quarkonium production in NRQCD](#page-2-0)

- [2. Our fit-and-prediction descriptions in NRQCD at NLO](#page-15-0)
- [3. Summary](#page-28-0)

(□) (母) (ヨ) (ヨ) (

 QQQ

Quarkonium: A multi-scale problem

⊩⊫

- Quarkonium: Excellent probe of PDFs, GPDs, TMDs, QGP.... Referred as the QCD version of hydrogen atom – The simplest QCD system.
- Quarkonium production at colliders is a typical multi-scale problem
	- m_O , the heavy-quark mass scale, $m_c \sim 1.5$ GeV, $m_b \sim 4.75$ GeV;
	- m_Qv , the typical heavy-quark momentum;
	- $m_Q v^2$, the typical heavy-quark kinetic energy and binding energy.
- v is the typical heavy-quark velocity in the quarkonium rest frame,
	- $v^2 \simeq 0.25$ for charmonium;
	- $v^2 \simeq 0.1$ for bottomonium.
- 50 year passed since the discovery of J/ψ , its production mechanism is not fully understood yet. Puzzles still remain.

 Ω

Nonrelativistic QCD (NRQCD) factorization

⊩⊫

• Nonrelativistic QCD (NRQCD) factorization is the most prominent approach to describe both quarkonium decay and production processes.

Bodwin, Braaten & Lepage, PRD 51, 1125 (1995), ∼ 3000 citations.

$$
\sigma_{\mathcal{Q}+X} = \sum_{n} \hat{\sigma} (ij \to Q\bar{Q}(n) + X) \langle \mathcal{O}^{\mathcal{Q}}(n) \rangle, \tag{1}
$$

with $i,j = \{p,\bar{p},e^+,e^-,\gamma,\gamma^*,...\}$, $n = {}^{2S+1}L^{[1/8]}_J,$ $[1], [8]$ representing colorsinglet (CS) and color-octet (CO), respectively.

- $\hat{\sigma}$, the short-distance-coefficients (SDCs), $Q\bar{Q}$ in state n produced at short distance, α_s expansion,
- $\langle \mathcal{O}^{\mathcal{Q}}(n) \rangle$, long-distance-matrix-elements (LDMEs), supposed to be universal, describing the hadronization $Q\bar{Q}(n) \rightarrow \mathcal{Q} + X$, v^2 expansion.
- NRQCD factorization: double expansion of α_s, v^2 .

 \sqrt{m}) \sqrt{m}) \sqrt{m})

 QQ

ŀF

p_T power counting

- At high p_T , p_T power counting dominates (over α_s, v^2 power counting).
- At LO, only ${}^3S_1^{[8]}$ channel gives p_T leading-power (LP, $1/p_T^4$) contribution, which leads to strong transverse polarization (The J/ψ polarization puzzle!).
- We need NLO calculation to include other LP contributions (CS contribution is small even at NNLO). Lansberg, EPJC 61, 693 (2009)

 298

Heavy quark spin symmetry (HQSS)

正

• For the spin-1 S-wave quarkonium V (J/ψ , Υ ...), based on HQSS, we have

$$
\langle \mathcal{O}^V(^3P_J^{[8]}) \rangle = (2J+1) \langle \mathcal{O}^V(^3P_0^{[8]}) \rangle (1 + \mathcal{O}(v^2)).
$$
 (2)

• Relations between the LDMEs of η_c and J/ψ due to HQSS,

$$
\langle \mathcal{O}^{\eta_c}({}^1S_0^{[1]}/{}^1S_0^{[8]}) \rangle = \frac{1}{3} \langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]}/{}^3S_1^{[8]}) \rangle (1 + \mathcal{O}(v^2)), \tag{3}
$$

$$
\langle \mathcal{O}^{\eta_c}({}^3S_1^{[8]}) \rangle = \langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]}) \rangle (1 + \mathcal{O}(v^2)), \tag{4}
$$

$$
\langle \mathcal{O}^{\eta_c}({}^1P_1^{[8]}) \rangle = 3 \langle \mathcal{O}^{J/\psi}({}^3P_0^{[8]}) \rangle (1 + \mathcal{O}(v^2)). \tag{5}
$$

4 D.K.

メメ 君 メメ 君 メ

←ロト ←何ト ←ヨト ←ヨト 。

 QQQ

NRQCD long-distance-matrix elements (LDMEs)

⊩⊫

The definitions of the relevant spin-1 S -wave quarkonium (V) LDMEs are

$$
\langle \mathcal{O}^V({}^3S_1^{[1]}) \rangle = \langle \Omega | \chi^{\dagger} \sigma^i \psi \mathcal{P}_{V(\mathbf{P}=\mathbf{0})} \psi^{\dagger} \sigma^i \chi | \Omega \rangle, \tag{6a}
$$

$$
\langle \mathcal{O}^V(^3S_1^{[8]}) \rangle = \langle \Omega | \chi^\dagger \sigma^i T^a \psi \Phi_\ell^{\dagger ab} \mathcal{P}_{V(\mathbf{P}=\mathbf{0})} \Phi_\ell^{bc} \psi^\dagger \sigma^i T^c \chi | \Omega \rangle, \tag{6b}
$$

$$
\langle \mathcal{O}^V({}^1S_0^{[8]}) \rangle = \langle \Omega | \chi^{\dagger} T^a \psi \Phi_\ell^{\dagger ab} \mathcal{P}_{V(\mathbf{P}=\mathbf{0})} \Phi_\ell^{bc} \psi^{\dagger} T^c \chi | \Omega \rangle, \tag{6c}
$$

$$
\langle \mathcal{O}^V({}^3P_0^{[8]}) \rangle = \frac{1}{3} \langle \Omega | \chi^{\dagger} (-\frac{i}{2} \overleftrightarrow{\mathbf{D}} \cdot \boldsymbol{\sigma}) T^a \psi \Phi_\ell^{\dagger ab} \mathcal{P}_{V(\mathbf{P}=\mathbf{0})} \times \Phi_\ell^{bc} \psi^{\dagger} (-\frac{i}{2} \overleftrightarrow{\mathbf{D}} \cdot \boldsymbol{\sigma}) T^c \chi | \Omega \rangle,
$$
\n(6d)

here $\mathcal{P}_{V(\boldsymbol{P})} = \sum\limits_X |V+X\rangle\langle V+X|,$ $\Phi_{\ell} = P\exp[-ig\int_0^{\infty}d\lambda\,\ell\cdot A^{\text{adj}}(\ell\lambda)]$ is the path-ordered Wilson line that ensures the gauge invariance.

- CS LDMEs can be related to quarkonium nonrelativistic wavefunctions.
- Unclear how to calculate CO LDMEs from first principle such as lattice, so the CO LDMEs are determined through fitting with experimental data.

Recent significant progress: Spin-1 S-wave LDMEs in pNRQCD

• Based on strong coupled pNRQCD, we have (up to $\mathcal{O}(1/N_c^2, v^2)$ corrections), Brambilla, Chung, Vairo & Wang, PRD105, L111503 (2022); JHEP 03 (2023) 242

$$
\langle \mathcal{O}^V(^3S_1^{[1]}) \rangle = 2N_c \times \frac{3|R_V^{(0)}(0)|^2}{4\pi},\tag{7a}
$$

$$
\langle \mathcal{O}^V(^3S_1^{[8]}) \rangle = \frac{1}{2N_c m^2} \frac{3|R_V^{(0)}(0)|^2}{4\pi} \mathcal{E}_{10;10},\tag{7b}
$$

$$
\langle \mathcal{O}^V(^1S_0^{[8]}) \rangle = \frac{1}{6N_c m^2} \frac{3|R_V^{(0)}(0)|^2}{4\pi} c_F^2 \mathcal{B}_{00},\tag{7c}
$$

$$
\langle \mathcal{O}^V(^3P_0^{[8]}) \rangle = \frac{1}{18N_c} \frac{3|R_V^{(0)}(0)|^2}{4\pi} \mathcal{E}_{00},\tag{7d}
$$

 $\mathcal{A} \oplus \mathcal{B}$ $\mathcal{B} \oplus \mathcal{B}$ $\mathcal{B} \oplus \mathcal{B}$

 QQ

- c_F is the NRQCD(HQET) matching coefficient,
- $R_V^{(0)}(0)$ is the wave-function at the origin,

⊩⊫

• $\mathcal{E}_{10:10}$, \mathcal{B}_{00} , and \mathcal{E}_{00} are universal gluonic correlators of mass dimension 2,

K 何 ▶ K ヨ ▶ K ヨ ▶

 298

Gluonic correlators

ŀF

$$
\mathcal{E}_{10;10} = \left| d^{dac} \int_0^\infty dt_1 \, t_1 \int_{t_1}^\infty dt_2 \, g E^{b,i}(t_2) \times \Phi_0^{bc}(t_1; t_2) g E^{a,i}(t_1) \Phi_0^{df}(0; t_1) \Phi_\ell^{ef} |\Omega\rangle \right|^2, \tag{8a}
$$

$$
\mathcal{B}_{00} = \Big|\int_0^\infty dt \, g B^{a,i}(t) \Phi_0^{ac}(0;t) \Phi_\ell^{bc} |\Omega\rangle \Big|^2, \tag{8b}
$$

$$
\mathcal{E}_{00} = \Big|\int_0^\infty dt \, g E^{a,i}(t) \Phi_0^{ac}(0;t) \Phi_\ell^{bc} |\Omega\rangle \Big|^2, \tag{8c}
$$

where $\Phi_0(t,t') = \mathcal{P} \exp[-ig \int_t^{t'}$ $t_t^{t'}$ $d\tau A_0^{\text{adj}}(\tau, \mathbf{0})]$ is a Schwinger line.

By evolving the scale of $\mathcal{E}_{10;10}$, \mathcal{B}_{00} , and \mathcal{E}_{00} from charm mass scale to bottom mass scale, we can related LDMEs between $\psi(nS)$ and $\Upsilon(nS)$.

pNRQCD predictive power

⊩⊫

- Significantly reduces the number of independent CO LDMEs ($15 \rightarrow 3$).
- J/ψ and $\psi(2S)$ share the same $\mathcal{E}_{10;10}$, \mathcal{B}_{00} , and \mathcal{E}_{00} , thus their cross sections ratio equals the ratio of $|R_{J/\psi}^{(0)}(0)|^2$ and $|R_{\psi(2S)}^{(0)}(0)|^2$ (same for $\Upsilon(nS)$ states).

Figures from Brambilla, Chung, Vairo & Wang, JHEP 03 (2023) 242

• The prediction is based on NRQCD factorization and pNRQCD relations of the LDMEs without explicit perturbative calculations!

K ロ ト K 何 ト K ヨ ト K

J/ψ LDMEs fittings

ŀΈ

- Chao et al. : $p_T > 7$ Gev, two linear combinations (of the 3 CO LDMEs) are constrained, but the best fit gives large $\langle \mathcal{O}^{J/\psi}(^1S_0^{[8]}) \rangle$. Ma, Wang & Chao, PRL 106, 042002 (2011)
- Butenschön et al. : $p_T > 3$ Gev, global fit (pp , $p\bar{p}$, γp , $\gamma\gamma$, e^+e^-). Butenschön & Kniehl, PRD 84, 051501 (2011)
- Zhang et al. : $p_T > 7$ Gev, combine J/ψ and η_c hadron production data based on HQSS, constrains $\langle {\cal O}^{J/\psi}(^1S_0^{[8]}) \rangle$ to be small. Zhang *et al.*, PRL 114, 092006 (2015)
- Bodwin et al. : $p_T > 10$ Gev, combine leading-power resummation with NLO fixed-order calculation.

Bodwin *et al.*, PRD 93, 034041 (2016)

- Feng et al. : $p_T > 7$ Gev, fit both J/ψ hadron production and polarization data. Feng *et al.*, PRD 99, 014044 (2019)
- TUM : $p_T > 3(5) \times 2m_Q$, fit 3 gluonic correlators to the high p_T J/ψ , $\psi(2S)$, $\Upsilon(2S/3S)$ hadroproduction data based on the pNRQCD relations, also leads to small $\langle {\cal O}^{J/\psi}(^1S_0^{[8]})\rangle.$

Brambilla, Chung, Vairo & Wang, PRD105, L111503 (2022); JHEP 03 (202[3\) 2](#page-9-0)4[2](#page-11-0) □ ▶ ◀ @ ▶ ◀ 로 ▶ ◀ 로 ▶ │ 로 │ ◆) ٩, 0

J/ψ LDMEs fittings

⊩⊫

Table: Selected representative fitting results in units of 10^{-2} GeV³.

- Dramatically different LDME sets are fitted, but none of them can well describe all the data, challenging the LDME universality.
- Fittings are based on NLO calculations, which are rather complicated and need super computer. Inclusive productions at NNLO are infeasible in near future.

 298

Score card of fittings

Table: Tests of the LDMEs for J/ψ from high p_T pp, and low $p_T \gamma p$, $\gamma \gamma$ collisions. $\sqrt{\chi}$ indicates marginally well (no serious conflict).

. **.** .

イロト イ母 トイヨ トイヨト

 QQ

The main conflicts/puzzles

Figures from M. Butenschön, B. A. Kniehl, Mod.Phys.Lett. A 28 (2013) 1350027.

- All high $p_T > 7$ GeV fittings overshoot the low $p_T \gamma p$ data by a factor of $\sim 5-10$ (see left figure, take Chao et. al as an example).
- Global fit cannot describe the low $p_T \gamma \gamma$ data and the J/ψ polarization data (see middle and right figures).

イロト イ押ト イヨト イヨト

 200

Motivations

⊩⊫

- The conflict between low p_T and high p_T fittings and descriptions still remain.
- It has been argued that NRQCD factorization may only hold at $p_T \gg 2m_Q$ (see, for instance, the talk of Bodwin at LepageFest 2024). Really?
- Key observation 1: There is no theory prediction for J/ψ p_T distribution in the region $1 \gg z$, although the data exist long time ago (surprising!).
- Key observation 2: There is no theory prediction using high p_T fit for the low p_T LEP data (surprising!), while the global low p_T fit cannot describe the data.
- Another motivation: Describe recent ATLAS (2309.17177, global fit cannot well describe the data at very high p_T) J/ψ production data with p_T ranging from 8 GeV to 360 GeV.

つへへ

Our new fitting strategies and fitting results

⊩F

- We combine LHC η_c and J/ψ data to fit 3 J/ψ CO LDMEs based on HQSS.
- We choose three different scale choices, $\mu_r = \mu_f = [\frac{1}{2}, 1, 2]m_T$, with the default scale choice $\mu_r=\mu_f=m_T$, where $m_T=\sqrt{4m_Q^2+p_T^2};$
- By choosing: $m_c = 1.5$ GeV, $\langle \mathcal{O}^{J/\psi}({}^3S_1^{[1]}) \rangle = 1.16$ GeV³, $\langle \mathcal{O}^{\psi(2S)}({}^3S_1^{[1]}) \rangle =$ $(0.76 \text{ GeV}^3 \text{ and } \langle \mathcal{O}^{\eta_c}(^1S_0^{[1]}) \rangle = 0.328 \text{ GeV}^3,$

we obtain three sets of fitted CO LDMEs with uncertainties, corresponding to the three different scale choices (in units of 10^{-2} GeV 3),

 290

Fitting results – LHCb η_c production

- Inner bands correspond to the default scale choice, the outer bands encompass the uncertainties coming from the two other scale choices.
- The above figures show that CS channel saturates the cross sections and thus can constrain $\langle {\cal O}^{J/\psi}(^1S_0^{[8]})\rangle$ to be small under HQSS.

K ロ ト K 伺 ト K ヨ ト

Fitting results – CMS J/ψ production

- The cross sections are based on the cancellation between a large positive $^3S_1^{[8]}$ and a large negative $^3P_J^{[8]}$ J/ ψ production channel.
- This cancellation is not fine-tuning, because NLO LDME mixing implies that only the sum of both contributions has physical sig[nifi](#page-16-0)[ca](#page-18-0)[nc](#page-16-0)[e.](#page-17-0)

 290

Prediction $-J/\psi$ polarization

• Our predictions are In good agreement with the measurements and match the pattern that λ_{θ} turns from slightly negative at relatively low p_T to positive and converges to $\lambda_{\theta} \sim 0.3$ at high p_T .

∢ □ ▶ ∢ [⊖]

• No polarization puzzle appear.

Prediction – ATLAS J/ψ production at very high p_T

ŀF

- Excellent description up to the highest measured p_T , supprising!
- Contradicts with the negative cross section predictions (arXiv: 2408.04255).
- It is, however, unclear why it works at very high p_T . The resummation effect of $\log(m_c^2/p_T^2)$ is expected to be significant at very high $p_T.$ Further investigations are needed to understand the deep reasons. Ω

Prediction – LHCb J/ψ production at low p_T

ŀF

- The ${}^{3}P_{J}^{[8]}$ SDCs change sign from negative to positive when going below $p_{T}\approx$ 7 GeV, so that instead of a cancellation between ${}^3S_1^{[8]}$ and ${}^3P_J^{[8]}$ channels, there is an amplification.
- The resulting steep increase at low p_T is not observed in the data.
- Small- x resummation needed.

Prediction – ATLAS $\Upsilon(nS)$ production in pNRQCD

- ATLAS $\Upsilon(3S)$ data well reproduced, similar results for $\Upsilon(1S)$ and $\Upsilon(2S)$.
- Highly nontrivial test of the above pNRQCD relations.
- The scale evolutions of the gluonic correlators (mainly from $\mathcal{E}_{10;10}$, ${}^3S_1^{[8]}$ LDMEs) result in a very different Fock state decomposition in $\Upsilon(3S)$, where the cross section is [do](#page-20-0)[m](#page-22-0)inated [b](#page-15-0)y the ${}^3S_1^{[8]}$ channel and feeddo[wn](#page-22-0) [f](#page-20-0)[ro](#page-21-0)m $\chi_{bJ}.$ $\chi_{bJ}.$ $\chi_{bJ}.$ $\chi_{bJ}.$ QQ

Prediction – ATLAS $J/\psi + Z$, single parton scattering (SPS)

ŀF

- ${}^{3}S_{1}^{[8]}$ channel dominates. DPS contribution is smaller at higher p_T .
- For the two highest p_T bins, predictions lie $\sim 2\sigma$ deviations below data. Underestimated DPS contributions, unlikely? or?

Prediction – LEP $\gamma\gamma \to J/\psi + X$

Figure: Left: global fit (Butenschön et al.); right: our prediction

• The cross section is exclusively dominated by single-resolved photon contributions. CS contribution is far below the data. ${}^{3}P_{J}^{[8]}$ channels dominate.

Prediction – HERA $\gamma p \to J/\psi + X$ (0.1 < z < 0.3)

ŀF

Figure: Our prediction with divided z bins (and figures in the next 2 slides). Inelasticity $z = E_{J/\psi}/E_{\gamma}$ in the proton rest frame.

For $0.1 < z < 0.3$, good description for the data except for a few lowest p_T bins, where resolved photon ($qa \rightarrow J/\psi + X$) contribution dominates, which is similar to hadroproduction case, so, not surprised. Ω

つへへ

Prediction – HERA $\gamma p \to J/\psi + X$ (0.3 < z < 0.6)

ŀF

- The data can be well described in the whole measured p_T range, [1, 10]GeV.
- ${}^{3}P_{J}^{[8]}$ channels dominate, comparing to the ${}^{3}S_{1}^{[8]}, {}^{3}P_{J}^{[8]}$ cancellation scenario in large p_T hadroproduction.

(□) (A)

Prediction – HERA $\gamma p \to J/\psi + X$ (0.6 $< z < 0.9$)

ŀF

- Obviously overshoot the data, regardless of p_T . For 0.75 $\lt z \lt 0.9$, predictions overshoot the data by factors of 5.2 to 20.
- The region $z \rightarrow 1$ corresponds to the endpoint region, where the NRQCD factorization may not be valid, v^2 expansion becomes $v^2/(1-z)$ expansion. Quarkonium shape function needed. Beneke, Rothstein [& W](#page-25-0)is[e, P](#page-27-0)[L](#page-25-0)[B 4](#page-26-0)[08](#page-27-0)[, 3](#page-14-0)[7](#page-15-0)[3](#page-27-0) [\(1](#page-28-0)[99](#page-14-0)[7\)](#page-15-0)[.](#page-27-0) つへへ

イロト イ押ト イヨト イヨト

 QQ

Update score card of fittings

Table: Tests of the LDMEs for J/ψ from high p_T pp, and low $p_T \gamma p$, $\gamma \gamma$ collisions. $\sqrt{\chi}$ indicates marginally well (no serious conflict).

• Now, J/ψ high p_T hadroproduciton and low p_T production from $\gamma p(z < 0.6)$, $\gamma\gamma$ collisions can be consistently described.

イロト イ押 トイヨ トイヨ トーヨ

 298

Summary

⊩⊫

- Simple answer: NRQCD works pretty well except for end-point regions.
- The following data are well reproduced in NRQCD factorization at NLO:
	- High $p_T J/\psi$, η_c , $\Upsilon(nS)$ production \checkmark (highly nontrivial test of pNRQCD)
	- High $p_T J/\psi$ polarization \checkmark no polarization puzzle!
	- Very high p_T (360 GeV) J/ψ production \checkmark surprising! (why so well?)
	- J/ ψ from $\gamma\gamma$ with $10\,\text{GeV}^2 > p_T^2 > 1\,\text{GeV}^2$ \checkmark surprising!
	- J/ ψ from γp with 100 GeV² $> p_T^2 > 1$ GeV², $z < 0.6$ \blacktriangleright surprising!
	- $J/\psi + Z \checkmark$ (underestimated DPS contributions, unlikely? or?)
- Challenges the argument that NRQCD factorization may only hold at $p_T \gg$ $2m_Q$, NRQCD works well at low p_T from $\gamma p, \gamma \gamma$ collisions.
- Observables still evade a consistent description: coincide with "extensions" of endpoint regions.
	- Low p_T hadroproduction $\boldsymbol{\chi}$ small-x resummation
	- J/ψ photoproduction ($z > 0.6$), J/ψ from Belle χ shape function
- Has significance impact on future quarkonium studies at EIC, EicC, HL-LHC.