3

How well does nonrelativistic QCD factorization work for inclusive quarkonium production at NLO?

Xiang-Peng Wang (TUM)

Nora Brambilla & Mathias Butenschön arXiv: 2411.16384

HF-HNC 2024,

China Hotel, Guangzhou

06 -11 Dec. 2024

Outlines

1. Review of inclusive quarkonium production in NRQCD

2. Our fit-and-prediction descriptions in NRQCD at NLO

3. Summary

Quarkonium: A multi-scale problem

- Quarkonium: Excellent probe of PDFs, GPDs, TMDs, QGP.... Referred as the QCD version of hydrogen atom – The simplest QCD system.
- Quarkonium production at colliders is a typical multi-scale problem
 - m_Q , the heavy-quark mass scale, $m_c \sim 1.5$ GeV, $m_b \sim 4.75$ GeV;
 - $m_Q v$, the typical heavy-quark momentum;
 - $m_Q v^2$, the typical heavy-quark kinetic energy and binding energy.
- v is the typical heavy-quark velocity in the quarkonium rest frame,
 - $v^2 \simeq 0.25$ for charmonium;
 - $v^2 \simeq 0.1$ for bottomonium.
- 50 year passed since the discovery of J/ψ , its production mechanism is not fully understood yet. Puzzles still remain.

Nonrelativistic QCD (NRQCD) factorization

IF

 Nonrelativistic QCD (NRQCD) factorization is the most prominent approach to describe both quarkonium decay and production processes.

Bodwin, Braaten & Lepage, PRD 51, 1125 (1995), ~ 3000 citations.

$$\sigma_{\mathcal{Q}+X} = \sum_{n} \hat{\sigma} \left(ij \to Q\bar{Q}(n) + X \right) \langle \mathcal{O}^{\mathcal{Q}}(n) \rangle, \tag{1}$$

with $i, j = \{p, \bar{p}, e^+, e^-, \gamma, \gamma^*, ...\}$, $n = {}^{2S+1}L_J^{[1/8]}$, [1], [8] representing color-singlet (CS) and color-octet (CO), respectively.

- $\hat{\sigma}$, the short-distance-coefficients (SDCs), $Q\bar{Q}$ in state n produced at short distance, α_s expansion,
- $\langle \mathcal{O}^{\mathcal{Q}}(n) \rangle$, long-distance-matrix-elements (LDMEs), supposed to be universal, describing the hadronization $Q\bar{Q}(n) \rightarrow Q + X$, v^2 expansion.
- NRQCD factorization: double expansion of α_s, v^2 .

< 回 > < 三 > < 三 >

p_T power counting

- At high p_T , p_T power counting dominates (over α_s , v^2 power counting).
- At LO, only ${}^{3}S_{1}^{[8]}$ channel gives p_{T} leading-power (LP, $1/p_{T}^{4}$) contribution, which leads to strong transverse polarization (The J/ψ polarization puzzle!).
- We need NLO calculation to include other LP contributions (CS contribution is small even at NNLO). Lansberg, EPJC 61, 693 (2009)

Heavy quark spin symmetry (HQSS)

Æ

• For the spin-1 S-wave quarkonium V $(J/\psi, \Upsilon...)$, based on HQSS, we have

$$\langle \mathcal{O}^{V}({}^{3}P_{J}^{[8]})\rangle = (2J+1)\langle \mathcal{O}^{V}({}^{3}P_{0}^{[8]})\rangle(1+\mathcal{O}(v^{2})).$$
⁽²⁾

Relations between the LDMEs of η_c and J/ψ due to HQSS,

$$\langle \mathcal{O}^{\eta_c}({}^{1}S_0^{[1]}/{}^{1}S_0^{[8]})\rangle = \frac{1}{3} \langle \mathcal{O}^{J/\psi}({}^{3}S_1^{[1]}/{}^{3}S_1^{[8]})\rangle(1+\mathcal{O}(v^2)),$$
(3)

$$\langle \mathcal{O}^{\eta_c}({}^{3}S_1^{[8]})\rangle = \langle \mathcal{O}^{J/\psi}({}^{1}S_0^{[8]})\rangle(1+\mathcal{O}(v^2)),$$
(4)

$$\langle \mathcal{O}^{\eta_c}({}^1P_1^{[8]})\rangle = 3\langle \mathcal{O}^{J/\psi}({}^3P_0^{[8]})\rangle(1+\mathcal{O}(v^2)).$$
(5)

NRQCD long-distance-matrix elements (LDMEs)

IF

The definitions of the relevant spin-1 S-wave quarkonium (V) LDMEs are

$$\langle \mathcal{O}^{V}(^{3}S_{1}^{[1]})\rangle = \langle \Omega|\chi^{\dagger}\sigma^{i}\psi\mathcal{P}_{V(\boldsymbol{P}=\boldsymbol{0})}\psi^{\dagger}\sigma^{i}\chi|\Omega\rangle, \tag{6a}$$

$$\langle \mathcal{O}^{V}({}^{3}S_{1}^{[8]})\rangle = \langle \Omega|\chi^{\dagger}\sigma^{i}T^{a}\psi\Phi_{\ell}^{\dagger ab}\mathcal{P}_{V(\boldsymbol{P}=\boldsymbol{0})}\Phi_{\ell}^{bc}\psi^{\dagger}\sigma^{i}T^{c}\chi|\Omega\rangle,$$
(6b)

$$\langle \mathcal{O}^{V}({}^{1}S_{0}^{[8]})\rangle = \langle \Omega|\chi^{\dagger}T^{a}\psi\Phi_{\ell}^{\dagger ab}\mathcal{P}_{V(\boldsymbol{P}=\boldsymbol{0})}\Phi_{\ell}^{bc}\psi^{\dagger}T^{c}\chi|\Omega\rangle,$$
(6c)

$$\langle \mathcal{O}^{V}({}^{3}P_{0}^{[8]}) \rangle = \frac{1}{3} \langle \Omega | \chi^{\dagger}(-\frac{i}{2} \overleftrightarrow{\boldsymbol{D}} \cdot \boldsymbol{\sigma}) T^{a} \psi \Phi_{\ell}^{\dagger ab} \mathcal{P}_{V(\boldsymbol{P}=\boldsymbol{0})} \times \Phi_{\ell}^{bc} \psi^{\dagger}(-\frac{i}{2} \overleftrightarrow{\boldsymbol{D}} \cdot \boldsymbol{\sigma}) T^{c} \chi | \Omega \rangle,$$
 (6d)

here $\mathcal{P}_{V(P)} = \sum_{X} |V + X\rangle \langle V + X|, \Phi_{\ell} = P \exp[-ig \int_{0}^{\infty} d\lambda \,\ell \cdot A^{\mathrm{adj}}(\ell\lambda)]$ is the path-ordered Wilson line that ensures the gauge invariance.

- CS LDMEs can be related to quarkonium nonrelativistic wavefunctions.
- Unclear how to calculate CO LDMEs from first principle such as lattice, so the CO LDMEs are determined through fitting with experimental data.

Recent significant progress: Spin-1 S-wave LDMEs in pNRQCD

• Based on strong coupled pNRQCD, we have (up to $\mathcal{O}(1/N_c^2, v^2)$ corrections), Brambilla, Chung, Vairo & Wang, PRD105, L111503 (2022); JHEP 03 (2023) 242

$$\langle \mathcal{O}^V({}^3S_1^{[1]})\rangle = 2N_c \times \frac{3|R_V^{(0)}(0)|^2}{4\pi},$$
(7a)

$$\langle \mathcal{O}^{V}({}^{3}S_{1}^{[8]})\rangle = \frac{1}{2N_{c}m^{2}}\frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi}\mathcal{E}_{10;10},$$
(7b)

$$\langle \mathcal{O}^V({}^1S_0^{[8]})\rangle = \frac{1}{6N_c m^2} \frac{3|R_V^{(0)}(0)|^2}{4\pi} c_F^2 \mathcal{B}_{00},\tag{7c}$$

$$\langle \mathcal{O}^{V}({}^{3}P_{0}^{[8]})\rangle = \frac{1}{18N_{c}} \frac{3|R_{V}^{(0)}(0)|^{2}}{4\pi} \mathcal{E}_{00},$$
(7d)

- c_F is the NRQCD(HQET) matching coefficient,
- $R_V^{(0)}(0)$ is the wave-function at the origin,

IF

• $\mathcal{E}_{10;10}$, \mathcal{B}_{00} , and \mathcal{E}_{00} are universal gluonic correlators of mass dimension 2,

Gluonic correlators

IF

$$\mathcal{E}_{10;10} = \left| d^{dac} \int_0^\infty dt_1 \, t_1 \int_{t_1}^\infty dt_2 \, g E^{b,i}(t_2) \right| \times \Phi_0^{bc}(t_1; t_2) g E^{a,i}(t_1) \Phi_0^{df}(0; t_1) \Phi_\ell^{ef} |\Omega\rangle \Big|^2, \tag{8a}$$

$$\mathcal{B}_{00} = \left| \int_0^\infty dt \, g B^{a,i}(t) \Phi_0^{ac}(0;t) \Phi_\ell^{bc} |\Omega\rangle \right|^2,\tag{8b}$$

$$\mathcal{E}_{00} = \left| \int_0^\infty dt \, g E^{a,i}(t) \Phi_0^{ac}(0;t) \Phi_\ell^{bc} |\Omega\rangle \right|^2,\tag{8c}$$

where $\Phi_0(t,t') = \mathcal{P} \exp[-ig \int_t^{t'} d\tau A_0^{\mathrm{adj}}(\tau,\mathbf{0})]$ is a Schwinger line.

• By evolving the scale of $\mathcal{E}_{10;10}$, \mathcal{B}_{00} , and \mathcal{E}_{00} from charm mass scale to bottom mass scale, we can related LDMEs between $\psi(nS)$ and $\Upsilon(nS)$.

pNRQCD predictive power

IF

- Significantly reduces the number of independent CO LDMEs $(15 \rightarrow 3)$.
- J/ψ and $\psi(2S)$ share the same $\mathcal{E}_{10;10}$, \mathcal{B}_{00} , and \mathcal{E}_{00} , thus their cross sections ratio equals the ratio of $|R_{J/\psi}^{(0)}(0)|^2$ and $|R_{\psi(2S)}^{(0)}(0)|^2$ (same for $\Upsilon(nS)$ states).

Figures from Brambilla, Chung, Vairo & \underline{Wang} , JHEP 03 (2023) 242

 The prediction is based on NRQCD factorization and pNRQCD relations of the LDMEs without explicit perturbative calculations!

J/ψ LDMEs fittings

IF

- Chao et al. : p_T > 7Gev, two linear combinations (of the 3 CO LDMEs) are constrained, but the best fit gives large (O^{J/ψ}(¹S₀^[8])).
 Ma, Wang & Chao, PRL 106, 042002 (2011)
- Butenschön et al. : $p_T>3$ Gev, global fit (pp, $p\bar{p}$, γp , $\gamma \gamma$, e^+e^-). Butenschön & Kniehl, PRD 84, 051501 (2011)
- Zhang et al. : $p_T > 7$ Gev, combine J/ψ and η_c hadron production data based on HQSS, constrains $\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]}) \rangle$ to be small. Zhang et al., PRL 114, 092006 (2015)
- Bodwin et al. : $p_T > 10$ Gev, combine leading-power resummation with NLO fixed-order calculation.

Bodwin et al., PRD 93, 034041 (2016)

- Feng et al. : $p_T > 7$ Gev, fit both J/ψ hadron production and polarization data. Feng et al., PRD 99, 014044 (2019)
- TUM : $p_T > 3(5) \times 2m_Q$, fit 3 gluonic correlators to the high $p_T J/\psi$, $\psi(2S)$, $\Upsilon(2S/3S)$ hadroproduction data based on the pNRQCD relations, also leads to small $\langle \mathcal{O}^{J/\psi}({}^{1}S_0^{[8]}) \rangle$.

Brambilla, Chung, Vairo & <u>Wang</u>, PRD105, L111503 (2022); JHEP 03 (2023) 242

J/ψ LDMEs fittings

IF

Table: Selected representative fitting results in units of 10^{-2} GeV³.

Group	$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]})\rangle/m^{2}$
Chao et al. set 1	0.05	7.4	0
Chao et al. set 2	1.11	0	1.89
Butenschön et al.	$\textbf{0.168} \pm \textbf{0.046}$	3.04 ± 0.35	$-$ 0.404 \pm 0.072
Zhang et al.	1.0 ± 0.3	0.74 ± 0.3	1.7 ± 0.5
Bodwin et al.	$-$ 0.713 \pm 0.364	11 ± 1.4	$-$ 0.312 \pm 0.151
Feng et al.	0.117 ± 0.058	5.66 ± 0.47	0.054 ± 0.005
$TUM \; (p_T > 3 \times 2m_Q)$	1.72 ± 0.18	-4.7± 1.55	$\textbf{3.14} \pm \textbf{0.35}$
$\mathrm{TUM} \ (p_T > 5 \times 2m_Q)$	$1.57{\pm}~0.45$	-2.73 ± 3.64	2.89±0.87

- Dramatically different LDME sets are fitted, but none of them can well describe all the data, challenging the LDME universality.
- Fittings are based on NLO calculations, which are rather complicated and need super computer. Inclusive productions at NNLO are infeasible in near future.

Score card of fittings

IF

Table: Tests of the LDMEs for J/ψ from high $p_T pp$, and low $p_T \gamma p$, $\gamma \gamma$ collisions. $\checkmark \checkmark$ indicates marginally well (no serious conflict).

Group	$pp \ (p_T \ \text{in fit})$	pol. (pp)	$\eta_c(pp)$	$J/\psi + Z$	γp	$\gamma\gamma$
Chao et al. set 1	$\checkmark (p_T > 7 { m GeV})$	~	×	-	×	-
Chao et al. set 2	$\checkmark (p_T > 7 { m GeV})$	1	1	-	×	-
Butenschön et al.	$\checkmark (p_T > 3 \text{GeV})$	×	×	×	1	×
Zhang et al. $+\eta_c$	✓ ($p_T > 6.5 \text{GeV}$)	 Image: A second s	1	-	×	-
Bodwin et al.	$\checkmark (p_T > 10 {\rm GeV})$	 Image: A second s	×	×	×	-
Feng et al.	$\checkmark (p_T > 7 { m GeV})$	 Image: A second s	×	-	×	-
TUM (pNRQCD)	$\checkmark (p_T > 3 \times 2m_Q)$	 Image: A second s	×	🗸 🗡	×	-
TUM (pNRQCD)	$\checkmark (p_T > 5 \times 2m_Q)$	1	1	✓ X	×	-

The main conflicts/puzzles

Figures from M. Butenschön, B. A. Kniehl, Mod. Phys. Lett. A 28 (2013) 1350027.

- All high $p_T > 7$ GeV fittings overshoot the low $p_T \gamma p$ data by a factor of $\sim 5-10$ (see left figure, take Chao et. al as an example).
- Global fit cannot describe the low $p_T \gamma \gamma$ data and the J/ψ polarization data (see middle and right figures).

Motivations

- The conflict between low p_T and high p_T fittings and descriptions still remain.
- It has been argued that NRQCD factorization may only hold at $p_T \gg 2m_Q$ (see, for instance, the talk of Bodwin at LepageFest 2024). Really?
- Key observation 1: There is no theory prediction for $J/\psi p_T$ distribution in the region $1 \gg z$, although the data exist long time ago (surprising!).
- Key observation 2: There is no theory prediction using high p_T fit for the low p_T LEP data (surprising!), while the global low p_T fit cannot describe the data.
- Another motivation: Describe recent ATLAS (2309.17177, global fit cannot well describe the data at very high p_T) J/ψ production data with p_T ranging from 8 GeV to 360 GeV.

< 回 > < 回 > < 回 > -

Our new fitting strategies and fitting results

IF

- We combine LHC η_c and J/ψ data to fit $3 J/\psi$ CO LDMEs based on HQSS.
- We choose three different scale choices, $\mu_r = \mu_f = [\frac{1}{2}, 1, 2]m_T$, with the default scale choice $\mu_r = \mu_f = m_T$, where $m_T = \sqrt{4m_Q^2 + p_T^2}$;
- By choosing: $m_c = 1.5 \text{ GeV}, \langle \mathcal{O}^{J/\psi}({}^{3}S_1^{[1]}) \rangle = 1.16 \text{ GeV}^3, \langle \mathcal{O}^{\psi(2S)}({}^{3}S_1^{[1]}) \rangle = 0.76 \text{ GeV}^3 \text{ and } \langle \mathcal{O}^{\eta_c}({}^{1}S_0^{[1]}) \rangle = 0.328 \text{ GeV}^3,$

we obtain three sets of fitted CO LDMEs with uncertainties, corresponding to the three different scale choices (in units of 10^{-2} GeV³),

$\mu_r = \mu_f$	$\langle \mathcal{O}^{J/\psi}({}^3S_1^{[8]})\rangle$	$\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$	$\frac{\langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]})\rangle}{m_{c}^{2}}$	$\frac{\chi^2_{\min}}{d.o.f}$
$m_T/2$	0.604 ± 0.106	-0.501 ± 0.171	0.716 ± 0.169	0.26
m_T	1.062 ± 0.195	-0.204 ± 0.229	1.905 ± 0.422	0.18
$2m_T$	1.367 ± 0.261	0.094 ± 0.288	3.232 ± 0.732	0.15

Fitting results – LHCb η_c production

- Inner bands correspond to the default scale choice, the outer bands encompass the uncertainties coming from the two other scale choices.
- The above figures show that CS channel saturates the cross sections and thus can constrain $\langle \mathcal{O}^{J/\psi}({}^1S_0^{[8]})\rangle$ to be small under HQSS.

Fitting results – CMS J/ψ production

- The cross sections are based on the cancellation between a large positive ${}^{3}S_{1}^{[8]}$ and a large negative ${}^{3}P_{J}^{[8]}$ J/ψ production channel.
- This cancellation is not fine-tuning, because NLO LDME mixing implies that only the sum of both contributions has physical significance.

Prediction $-J/\psi$ polarization

- Our predictions are In good agreement with the measurements and match the pattern that λ_{θ} turns from slightly negative at relatively low p_T to positive and converges to $\lambda_{\theta} \sim 0.3$ at high p_T .
- No polarization puzzle appear.

Prediction – ATLAS J/ψ production at very high p_T

- Excellent description up to the highest measured *p*_{*T*}, supprising!
- Contradicts with the negative cross section predictions (arXiv: 2408.04255).
- It is, however, unclear why it works at very high p_T . The resummation effect of $\log(m_c^2/p_T^2)$ is expected to be significant at very high p_T . Further investigations are needed to understand the deep reasons.

Prediction – LHCb J/ψ production at low p_T

Æ

- The ${}^{3}P_{J}^{[8]}$ SDCs change sign from negative to positive when going below $p_{T} \approx$ 7 GeV, so that instead of a cancellation between ${}^{3}S_{1}^{[8]}$ and ${}^{3}P_{J}^{[8]}$ channels, there is an amplification.
- The resulting steep increase at low p_T is not observed in the data.
- Small-*x* resummation needed.

Prediction – ATLAS $\Upsilon(nS)$ production in pNRQCD

- ATLAS $\Upsilon(3S)$ data well reproduced, similar results for $\Upsilon(1S)$ and $\Upsilon(2S)$.
- Highly nontrivial test of the above pNRQCD relations.
- The scale evolutions of the gluonic correlators (mainly from $\mathcal{E}_{10;10}$, ${}^{3}S_{1}^{[8]}$ LDMEs) result in a very different Fock state decomposition in $\Upsilon(3S)$, where the cross section is dominated by the ${}^{3}S_{1}^{[8]}$ channel and feeddown from χ_{bJ} .

Prediction – ATLAS $J/\psi + Z$, single parton scattering (SPS)

Æ

- ${}^{3}S_{1}^{[8]}$ channel dominates. DPS contribution is smaller at higher p_{T} .
- For the two highest p_T bins, predictions lie $\sim 2\sigma$ deviations below data. Underestimated DPS contributions, unlikely? or?

Prediction – LEP $\gamma\gamma \rightarrow J/\psi + X$

Figure: Left: global fit (Butenschön et al.); right: our prediction

The cross section is exclusively dominated by single-resolved photon contributions. CS contribution is far below the data. ³P_J^[8] channels dominate.

Prediction – HERA $\gamma p \rightarrow J/\psi + X$ (0.1 < z < 0.3)

IF

Figure: Our prediction with divided z bins (and figures in the next 2 slides). Inelasticity $z = E_{J/\psi}/E_{\gamma}$ in the proton rest frame.

• For 0.1 < z < 0.3, good description for the data except for a few lowest p_T bins, where resolved photon $(gg \rightarrow J/\psi + X)$ contribution dominates, which is similar to hadroproduction case, so, not surprised.

Prediction – HERA $\gamma p \rightarrow J/\psi + X$ (0.3 < z < 0.6)

Æ

- The data can be well described in the whole measured p_T range, [1, 10]GeV.
- ${}^{3}P_{J}^{[8]}$ channels dominate, comparing to the ${}^{3}S_{1}^{[8]}$, ${}^{3}P_{J}^{[8]}$ cancellation scenario in large p_{T} hadroproduction.

< □ > < /□ > < □ >

Prediction – HERA $\gamma p \rightarrow J/\psi + X$ (0.6 < z < 0.9)

- Obviously overshoot the data, regardless of p_T . For 0.75 < z < 0.9, predictions overshoot the data by factors of 5.2 to 20.
- The region $z \to 1$ corresponds to the endpoint region, where the NRQCD factorization may not be valid, v^2 expansion becomes $v^2/(1-z)$ expansion. Quarkonium shape function needed. Beneke, Rothstein & Wise, PLB 408, 373 (1997).

Update score card of fittings

Table: Tests of the LDMEs for J/ψ from high $p_T pp$, and low $p_T \gamma p$, $\gamma \gamma$ collisions. $\checkmark \checkmark$ indicates marginally well (no serious conflict).

Group	$pp (p_T \text{ in fit})$	pol. (pp)	$\eta_c (pp)$	$J/\psi + Z$	γp	$\gamma\gamma$
Chao et al. set 1	$\checkmark (p_T > 7 \text{GeV})$	1	×	-	×	-
Chao et al. set 2	$\checkmark (p_T > 7 \text{GeV})$	1	1	-	×	-
Butenschön et al.	$\checkmark (p_T > 3 \text{GeV})$	×	×	×	 Image: A set of the set of the	×
Zhang et al. $+\eta_c$	$\checkmark (p_T > 6.5 \text{GeV})$	1	1	-	×	-
Bodwin et al.	$\checkmark (p_T > 10 \text{GeV})$	1	×	×	×	-
Feng et al.	\checkmark (p_T > 7GeV)	1	×	-	×	-
TUM (pNRQCD)	$\checkmark (p_T > 3 \times 2m_Q)$	1	×	🗸 🗡	×	-
TUM (pNRQCD)	$\checkmark (p_T > 5 \times 2m_Q)$	1	1	🗸 🗶	×	-
This work	$\checkmark (p_T > 6.5 \text{GeV})$	1	1	🗸 🗡	✓ ($z < 0.6$)	1

• Now, J/ψ high p_T hadroproduciton and low p_T production from $\gamma p(z < 0.6)$, $\gamma \gamma$ collisions can be consistently described.

Summary

- Simple answer: NRQCD works pretty well except for end-point regions.
- The following data are well reproduced in NRQCD factorization at NLO:
 - High $p_T J/\psi$, η_c , $\Upsilon(nS)$ production \checkmark (highly nontrivial test of pNRQCD)
 - High $p_T J/\psi$ polarization \checkmark no polarization puzzle!
 - Very high p_T (360 GeV) J/ψ production \checkmark surprising! (why so well?)
 - J/ψ from $\gamma\gamma$ with $10 \text{ GeV}^2 > p_T^2 > 1 \text{ GeV}^2$ surprising!
 - J/ψ from γp with $100 \text{ GeV}^2 > p_T^2 > 1 \text{ GeV}^2$, z < 0.6 surprising!
 - $J/\psi + Z \checkmark$ (underestimated DPS contributions, unlikely? or?)
- Challenges the argument that NRQCD factorization may only hold at $p_T \gg 2m_Q$, NRQCD works well at low p_T from $\gamma p, \gamma \gamma$ collisions.
- Observables still evade a consistent description: coincide with "extensions" of endpoint regions.
 - Low p_T hadroproduction X small-x resummation
 - J/ψ photoproduction (z > 0.6), J/ψ from Belle X shape function
- Has significance impact on future quarkonium studies at EIC, EicC, HL-LHC.