

### A next-generation heavy-ion experiment at the LHC

Valerio Sarritzu (CERN, INFN, UniCA) on behalf of the ALICE collaboration

### **ALICE** Heavy-ion physics @ the LHC

**Physics goal**: studying the quark-gluon plasma produced in heavy-ion collisions at the LHC



Hadronisation GGP formation GGP formation GGP formation GGP formation Fre-equilibrium Fre-equilibrium GGP formation Fre-equilibrium Fre-equilibrium GGP formation Fre-equilibrium Fre-equilibrium GGP formation Fre-equilibrium Fre-equilibrium Control of the second Fre-equilibrium Fre-equilibrium GGP formation Fre-equilibrium Fre-equilibrium Control of the second Fre-equilibrium Fre-equilibrium GGP formation Fre-equilibrium GGP formation GGP formation GGP formation Fre-equilibrium Fre-equilibri

#### Two key drivers of upgrade strategy:

- Heavy flavour transport and hadronization in the medium
  - differential measurements of hadron production down to vanishing p<sub>τ</sub>
- Electromagnetic radiation from the medium
  - dileptons < J/ $\psi$  mass, ~0  $p_{T}$

Freeze-ou

## **ALICE Upgrade Roadmap**

#### **Run 3: the ALICE 2 detector**





### ALICE Upgrade Roadmap Run 4: ITS3 & FoCal





# ALICE Upgrade Roadmap

#### Run 4: FoCal

- Pseudorapidity coverage:
   3.2 < η < 5.6</li>
- Main goal: direct photon detection in p-Pb to probe gluon density in Pb down to x~10<sup>-6</sup>, well below saturation scale QS
- **Unique programme**, complementary to LHCb, ATLAS/CMS and EIC coverage
  - EM probes (photons) complementary to hadronic ones (e.g. charm)

FoCal-H: hadronic calorimeter Copper capillary tubes filled with scintillating fibers • Photon isolation, energy and iet measurements FoCal-E: electromagnetic calorimeter • Pads (1×1 cm<sup>2</sup>) and pixels (30 x 30 µm<sup>2</sup>) High spatial resolution to distinguish between isolated photons and decay photon pairs **Collision Point** (IP2) 7 m

|       | 1    |                                    | 1 | 1    | 1               | I    | 1    | I      | 1    | 1    | 1    |      | 1       |      |      | 1 | 1 | 1 | I |  |  |
|-------|------|------------------------------------|---|------|-----------------|------|------|--------|------|------|------|------|---------|------|------|---|---|---|---|--|--|
|       | AL   | ICE 2                              |   |      |                 |      | ALI  | CE 2.' | 1    |      |      |      | ALICE 3 |      |      |   |   |   |   |  |  |
|       |      |                                    |   |      | 1               | 1    | 1    |        |      |      |      |      | 1       |      |      |   |   | 1 |   |  |  |
| Run 3 |      |                                    |   |      | LS 3 Run 4 LS 3 |      |      |        |      |      |      | Ru   | lun 5   |      |      |   |   |   |   |  |  |
| 2022  | 2023 | 3 2024 2025 2026 2027 2028 2029 20 |   | 2030 | 2031            | 2032 | 2033 | 2034   | 2035 | 2036 | 2037 | 2038 | 2039    | 2040 | 2041 |   |   |   |   |  |  |

### **ALICE Upgrade Roadmap** Run 4: ITS3

- Replacement of ITS2 Inner Barrel with 3 layers of curved 50-µm-thick wafer-scale MAPS
- **Air cooling** + ultra-light mechanics
- **Reduced material budget:** 0.09% (now 0.36%) X<sub>0</sub> per layer
- **Smaller radius** of the innermost layer: 19 mm (now 23 mm)

ALICE 2 **ALICE 2.1** ALICE 3 Run 3 **LS**3 LS<sub>3</sub> Run 4 Run 5 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041



6



Carbon foam



### ALICE Upgrade Roadmap Run 4: ITS3

- DCA resolution improved by ~2x → improved separation of secondary vertices
- Many fundamental observables strongly profiting or becoming in reach:
  - Charmed and beauty baryons
  - Low-mass di-electrons
  - Full topological reconstruction of B<sub>s</sub>



|       | 1          | 1     | 1    | 1    | 1    | 1    | 1    | 1      | 1    | 1    | 1    | 1       |      | I    | 1    | 1    | 1    | 1    | I    |  |  |  |  |  |
|-------|------------|-------|------|------|------|------|------|--------|------|------|------|---------|------|------|------|------|------|------|------|--|--|--|--|--|
|       | AL         | ICE 2 |      |      |      |      | ALI  | CE 2.' | 1    |      |      | ALICE 3 |      |      |      |      |      |      |      |  |  |  |  |  |
| Run 3 |            |       |      |      | 1    | LS 3 | 1    | 1      | R    | un 4 |      | LS      | 3    |      | 1    | Ru   | n 5  |      |      |  |  |  |  |  |
| 2022  | 022 2023 2 |       | 2025 | 2026 | 2027 | 2028 | 2029 | 2030   | 2031 | 2032 | 2033 | 2034    | 2035 | 2036 | 2037 | 2038 | 2039 | 2040 | 2041 |  |  |  |  |  |

## **ALICE Upgrade Roadmap**

#### Key measurements that will still be missing after Runs 3 and 4





### ALICE Upgrade Roadmap Run 4: ALICE 3





# **Requirements**

**ALICE 3** 

|       | Component             | Observables                                          | <b>Barrel</b> ( $ \eta  < 1.75$ )                                                                                        | Forward $(1.75 <  \eta  < 4)$                                                                                                                                                     | Detectors                                                                                                                                                         |  |  |  |  |  |
|-------|-----------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| king  | Vertexing             | (Multi-)charm<br>baryons,<br>dielectrons             | Best possible DCA resolution,<br>$\sigma_{\rm DCA} \approx 10 \mu{\rm m}$ at<br>$p_{\rm T} = 200 {\rm MeV}/c,  \eta = 0$ | Best possible DCA resolution,<br>$\sigma_{\text{DCA}} \approx 30 \mu \text{m at}$<br>$p_{\text{T}} = 200 \text{ MeV}/c, \eta = 3$                                                 | retractable Si-pixel tracker:<br>$\sigma_{\text{pos}} \approx 2.5 \mu\text{m},$<br>$R_{\text{in}} \approx 5 \text{mm},$<br>$X/X_0 \approx 0.1 \%$ for first layer |  |  |  |  |  |
| Track | Tracking              | (Multi-)charm<br>baryons,<br>dielectrons,<br>photons | z 1 − − 2 %                                                                                                              | Silicon pixel tracker:<br>$\sigma_{\text{pos}} \approx 10 \mu\text{m},$<br>$R_{\text{out}} \approx 80 \text{cm},$<br>$L \approx \pm 4 \text{m}$<br>$X/X_0 \approx 1 \%$ per layer |                                                                                                                                                                   |  |  |  |  |  |
|       | Hadron ID             | (Multi-)charm<br>baryons                             | $\pi/K/p$ separation                                                                                                     | up to a few GeV/c                                                                                                                                                                 | Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$<br>RICH: $n \approx 1.006 - 1.03$ ,<br>$\sigma_{\theta} \approx 1.5 \text{ mrad}$                            |  |  |  |  |  |
| 0     | Electron ID           | Dielectrons,<br>quarkonia,<br>$\chi_{c1}(3872)$      | pion rejection by 1000x<br>up to 2–3 GeV/c                                                                               |                                                                                                                                                                                   | Time of flight: $\sigma_{\text{tof}} \approx 20 \text{ ps}$<br>RICH: $n \approx 1.006 - 1.03$ ,<br>$\sigma_{\theta} \approx 1.5 \text{ mrad}$                     |  |  |  |  |  |
| E     | Muon ID               | Quarkonia, $\chi_{c1}(3872)$                         | reconstruction of J/ $\psi$ at rest,<br>i.e. muons from $p_{\rm T} \sim 1.5  {\rm GeV}/c$ at<br>$\eta = 0$               |                                                                                                                                                                                   | steel absorber: $L \approx 70 \text{ cm}$<br>muon detectors                                                                                                       |  |  |  |  |  |
|       | ECal                  | Photons,<br>jets                                     | large ac                                                                                                                 | ceptance                                                                                                                                                                          | Pb-Sci sampling calorimeter                                                                                                                                       |  |  |  |  |  |
|       | ECal                  | $\chi_c$                                             | high-resolution segment                                                                                                  |                                                                                                                                                                                   | PbWO <sub>4</sub> calorimeter                                                                                                                                     |  |  |  |  |  |
| Ð     | Soft photon detection | Ultra-soft photons                                   |                                                                                                                          | measurement of photons<br>in $p_{\rm T}$ range 1–50 MeV/ $c$                                                                                                                      | Forward conversion tracker<br>based on silicon pixel tracker                                                                                                      |  |  |  |  |  |

https://arxiv.org/abs/2211.02491





Valerio Sarritzu @ HF-HNC 2024, 10 Dec 2024

#### 10





#### A compact, low-mass, all-silicon tracker



Valerio Sarritzu @ HF-HNC 2024, 10 Dec 2024



#### A compact, low-mass, all-silicon tracker



Valerio Sarritzu @ HF-HNC 2024, 10 Dec 2024

#### **Tracking: vertex detector**

**Retractable** silicon pixel detector **inside the beam pipe**:

- 3 barrel layers
- 3 forward + backwards disks
- pointing resolution limited by multiple scattering:

 $\sigma_{\rm DCA} \propto r_0 \cdot \sqrt{x/X_0}$ 





#### **Tracking: vertex detector**

**Retractable** silicon pixel detector **inside the beam pipe**:

- 3 barrel layers
- 3 forward + backwards disks
- pointing resolution limited by multiple scattering:

 $\sigma_{\rm DCA} \propto r_0 \cdot \sqrt{x/X_0}$ 

Distance from interaction point:  $r_o \approx 5 \text{ mm at top energy}$ 



|                     | Component | Detectors                                                                                                                                |  |
|---------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|--|
|                     | Vertexing | retractable Si-pixel tracker:<br>$\sigma_{pos} \approx 2.5 \mu m$ ,<br>$R_{in} \approx 5 mm$ ,<br>$X/X_0 \approx 0.1 \%$ for first layer |  |
| Iltiple scattering: |           |                                                                                                                                          |  |
|                     |           |                                                                                                                                          |  |

#### **Tracking: vertex detector**

**Retractable** silicon pixel detector **inside the beam pipe**:

- 3 barrel layers
- 3 forward + backwards disks
- pointing resolution limited by multiple scattering:

 $\sigma_{\rm DCA} \propto r_0 \cdot \sqrt{x/X_0}$ 

Distance from interaction point:  $r_o \approx 15 \text{ mm at injection energy}$ 



|                  | Component | Detectors                                                                                                                                                         |  |
|------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                  | Vertexing | retractable Si-pixel tracker:<br>$\sigma_{\text{pos}} \approx 2.5 \mu\text{m},$<br>$R_{\text{in}} \approx 5 \text{mm},$<br>$X/X_0 \approx 0.1 \%$ for first layer |  |
| iple scattering: |           |                                                                                                                                                                   |  |
|                  |           |                                                                                                                                                                   |  |

#### **Tracking: vertex detector**

Retractable silicon pixel detector inside the beam pipe:

- 3 barrel layers
- 3 forward + backwards disks
- pointing resolution limited by multiple scattering:

 $\sigma_{\rm DCA} \propto r_0 \cdot \sqrt{x/X_0}$ 







dileptons



#### Instrumental for **reconstruction of displaced vertices** from heavy-flavor decays

 $(\Xi_{cc'}, \Omega_{cc'}, \Lambda_{b'}, H_{c/b} \rightarrow e/\mu^{\pm} + X, ...):$ 

**Tracking: vertex detector** 

- multi-charm measurements
- charm correlations
- low- $p_{\tau}$  beauty measurements





2.2

#### Tracking: middle layers + outer tracker

Large-acceptance lightweight all-silicon tracker

- 4 middle + 4 outer barrel layers
- 3 middle + 6 outer forward/backward disks
- solenoidal magnetic field of 2 T
- momentum resolution limited by multiple scattering:

$$\frac{\Delta p_{\rm T}}{p_{\rm T}} \propto \frac{\sqrt{x/X_0}}{B \cdot L}$$

☞ 60 m<sup>2</sup> of MAPS



#### Component Detectors

Tracking Silicon pixel tracker:  $\sigma_{pos} \approx 10 \mu m$ ,  $R_{out} \approx 80 \text{ cm}$ ,  $L \approx \pm 4 \text{ m}$  $X/X_0 \approx 1\%$  per layer



#### Tracking: middle layers + outer tracker

Large-acceptance lightweight all-silicon tracker

- 4 middle + 4 outer barrel layers
- 3 middle + 6 outer forward/backward disks
- solenoidal magnetic field of 2 T
- momentum resolution limited by multiple scattering:

$$\frac{\Delta p_{\rm T}}{p_{\rm T}} \propto \frac{\sqrt{x/X_0}}{B \cdot L}$$
1 T: 2 S



#### Component Detectors Tracking Silicon pixel tracker: $\sigma_{\rm pos} \approx 10 \,\mu{\rm m},$ $R_{\rm out} \approx 80 \, {\rm cm},$ $L \approx \pm 4 \,\mathrm{m}$ $X/X_0 \approx 1$ % per layer $\Delta p_{T}/p_{T}$ 0.16 0.14 ALICE3 study ACTS reconstruction 0.12 Ref. layout February 2024 p\_ = 1 GeV/c 0.1 • $B = 1 T. \pi$ 0.08 $\circ$ B = 1 T, p • $B = 2 T, \pi$ 0.06 B = 2T, p0.04 % @ 1 GeV/c 2 T: 1% @ 1 GeV/c 0.02 3.5 2.5 0.5 3 1.5 n **Relative momentum resolution**

### **ALICE 3** Particle identification

| Component             | Detectors                                                                                                                                                                         |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vertexing             | retractable Si-pixel tracker:<br>$\sigma_{\text{pos}} \approx 2.5 \mu\text{m},$<br>$R_{\text{in}} \approx 5 \text{mm},$<br>$X/X_0 \approx 0.1 \%$ for first layer                 |
| Tracking              | Silicon pixel tracker:<br>$\sigma_{\text{pos}} \approx 10 \mu\text{m},$<br>$R_{\text{out}} \approx 80 \text{cm},$<br>$L \approx \pm 4 \text{m}$<br>$X/X_0 \approx 1 \%$ per layer |
| Hadron ID             | Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$<br>RICH: $n \approx 1.006 - 1.03$ ,<br>$\sigma_{\theta} \approx 1.5 \text{ mrad}$                                            |
| Electron ID           | Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$<br>RICH: $n \approx 1.006 - 1.03$ ,<br>$\sigma_{\theta} \approx 1.5 \text{ mrad}$                                            |
| Muon ID               | steel absorber: $L \approx 70 \text{ cm}$<br>muon detectors                                                                                                                       |
| ECal                  | Pb-Sci sampling calorimeter                                                                                                                                                       |
| ECal                  | PbWO <sub>4</sub> calorimeter                                                                                                                                                     |
| Soft photon detection | Forward conversion tracker based on silicon pixel tracker                                                                                                                         |

DE



Valerio Sarritzu @ HF-HNC 2024, 10 Dec 2024

#### **Particle identification: TOF**

**Full-coverage time-of-flight detector** based on silicon timing sensors (CMOS-LGAD, LGAD, SiPM):

- total resolution ≈ **20 ps**
- outer barrel TOF (R ≈ 85 cm)
   → p<sub>T,min</sub> ≈ 0.3 GeV/c @ 2 T
- inner barrel TOF (R ≈ 20 cm)
   → p<sub>T, min</sub> ≈ 15 MeV/c @ 0.5 T
- forward TOF (z  $\approx$  375 cm)

#### **Particle separation:**

- electrons → dilepton measurements
- $\pi/K/p \rightarrow$  heavy-flavour measurements





#### **Particle identification: RICH**

**Full-coverage Ring Imaging Cherenkov detector** based on aerogel and silicon photon sensors

- bRICH + fRICH
- Extending PID to higher  $p_{T}$
- R&D challenge: SiPM radiation hardness (NIEL ~10<sup>12</sup> 1 MeV n-eq)







#### **Particle identification: muon chambers**

Key features:

- **Muon tagging**: matching tracklets with tracks (tracker)
- Reconstruct  $J/\psi$  down to  $p_T = 0$  (|y| < 1.24) in the dimuon decay channel
  - muons **down to** *p* ≈ **1.5 GeV/c at** *η* ≈ **0**)
- Unique capabilities in the LHC Run 5 (ATLAS and CMS:  $J/\psi > 6.5$  GeV/c at midrapidity)





#### Particle identification: muon chambers

Key features:

- ~ 70 cm ( $\eta$ =0) steel hadron absorber - ~10<sup>-2</sup> hadron rejection factor
- 2 layers with 5×5 cm<sup>2</sup> pad size (enough for 1.5-5 GeV/c)
- Baseline: plastic scintillator bars w/ wavelength shifting fibres + SiPMs
  - time res ~ns
- Options:
  - MWPCs (resolution: a few mm)
  - RPCs: (time, granularity 5×5 cm<sup>2</sup>)





#### **Particle identification: ECal**

Key features:

- High-energy electron and photon ID
  - Up to 100 GeV for  $|\eta| < 1.5$
  - Up to 250 GeV for 1.5 <  $\eta$  < 4
- Large acceptance:  $2\pi$  coverage
  - **10x** acceptance w/r/t ALICE 2 (EMCal)
- Central barrel
  - **High-res** segment based on  $PbWO_4 + SiPM$
- Outer barrel + endcap
  - Sampling calorimeter, O(100) layers of
     1 mm Pb + 1.5 mm plastic scintillator
- Photons can be correlated with charged jets in  $|\eta|$ <4 (exploiting ALICE 3 tracker acceptance)





ECal

## **Main physics performance studies**



**Multi-charm baryons with ALICE 3** 



## **Main physics performance studies**

#### Heavy-quark correlations

- Azimuthal correlations between DD, BB pairs
  - Direct access to interactions with QGP, momentum diffusion, in particular at low  $p_{\tau}$
- Complementary to heavy-flavour flow
  - Sensitive to interaction mechanism, nature of scattering centres

Need large statistics, large purity for D (B) mesons, large  $\eta$  coverage  $\rightarrow$  Run 5









### **Main physics performance studies** QGP temperature with ITS3 and ALICE 3





- Measurement of time-average temperature (from dileptons slope) with ITS3
- ALICE 3 reduces systematic uncertainty by 2-3x and enables time-dependent measurement

#### Global schedule Today

|         | 2023                                | 2023 2024                                |               |               |                |              | 026               | 1           | 20            | 27          |                 | 2028    |               |                 | 2029    |           | 2     | 030        |         | 20   | 031   |       | 2                  | 032         | -       |      | 203                           | 3     |             | 203   | 34         |            | 203    | 35          |  |
|---------|-------------------------------------|------------------------------------------|---------------|---------------|----------------|--------------|-------------------|-------------|---------------|-------------|-----------------|---------|---------------|-----------------|---------|-----------|-------|------------|---------|------|-------|-------|--------------------|-------------|---------|------|-------------------------------|-------|-------------|-------|------------|------------|--------|-------------|--|
|         | R                                   |                                          | n 3           |               |                |              |                   | LS3         |               |             |                 |         |               | 3               |         |           |       |            |         |      |       |       |                    | Run 4       |         |      |                               |       |             |       | LS4        |            |        |             |  |
|         | Q1 Q2 Q3 Q4                         | Q1 Q2 Q3                                 | Q4 Q          | 1 Q2 0        | Q3 Q4          | Q1 Q         | 2 Q3              | Q4 Q        | 1 Q2          | Q3 (        | Q4 Q1           | Q2 Q    | 3 Q4          | Q1              | Q2 Q3   | Q4        | Q1 Q2 | 2 Q3       | Q4 Q1   | QZ   | Q3    | Q4    | Q1 Q               | 2 Q3        | Q4      | Q1   | Q2 (                          | 23 Q4 | Q1          | Q2 (  | Q3 Q       | 14 Q1      | Q2 (   | Q3 Q4       |  |
| ALICE 3 | Detector<br>scoping,<br>WGs kickoff | Select<br>R&D,                           | on of<br>once | tech<br>pt pr | nolog<br>ototy | ;ies,<br>pes | R8                | kD, TI<br>F | DRs,<br>proto | eng<br>type | ineere<br>es    | ed      |               |                 |         |           | Const | tructi     | on      |      |       |       |                    |             | C<br>pr | onti | inge<br>mmi                   | ncy a | and<br>ning |       | In:<br>co  | stalla     | tion a | and<br>iing |  |
| Magnet  | C                                   | Design, R& D g g g Construction Continge |               |               |                |              |                   |             | inge          | ncy         |                 | Cor     | )n-su<br>nmis | rface<br>sionin | ng      | In        |       |            |         |      |       |       |                    |             |         |      |                               |       |             |       |            |            |        |             |  |
| ΙТ      | Design, R&D P                       |                                          |               |               | Pr             | ototyp       | ping              | IUK         |               | Prototyping |                 |         |               | Pr              | e-prod  |           | PRR   | Production |         |      |       | Inter | tegration Continge |             |         | ency | y On-surface<br>commissioning |       |             | Insta | allation   |            |        |             |  |
| ОТ      | De                                  | sign, R&D                                |               |               | Prototy        | ping ID      | Pro               | ototy       | ping          | EDR         | Pre-pro         | od. PRR |               |                 |         |           |       | Prod       | luction | n    |       |       |                    |             |         | Co   | nting                         | ency  | Inte        | gr.   | Com        | miss.      | Insta  | allation    |  |
| TOF     |                                     | Design, R                                | kD            |               |                | Pro          | ototyp            | ping        | TDR           | Pro         | totypir         | ng EDR  | Pr            | re-pro          | oductio | m         | PRR   | 1          | rodu    | ctio | n     |       | Inte               | grati       | on      | Co   | nting                         | ency  | co          | On-s  | surfac     | ce<br>ning | Insta  | allation    |  |
| RICH    |                                     | Design,                                  | R&D           |               |                |              | Prote             | otypi       | ng            | TDR         | Prote           | otypir  | ng            | EDR             | Pre-pro | od.       | PRR   |            |         | Pro  | duct  | tion  |                    |             |         | Co   | nting                         | ency  | Inte        | gr.   | Com        | miss.      | Insta  | allation    |  |
| ECal    | l Design, R&D                       |                                          |               |               | Pro            | ototy        | totyping 💆 Protot |             |               | ototyp      | yping Pre-prod. |         |               | od.             | PRR     | Productio |       |            |         |      | in    |       |                    | Contingency |         |      |                               | Inte  | gratic      | n     | Insta      | allation   |        |             |  |
| MID     | Design                              | & Prototy                                | ing           |               | Prot           | totypin      | ng                | TDR         | Prot          | totyp       | oing            | EDR     | re-p          | rodu            | ction   | PRR       |       |            | P       | rod  | uctio | m     |                    |             |         | Co   | nting                         | ency  | co          | On-s  | surfaction | ce<br>ning | Insta  | allation    |  |
| FCT     |                                     | De                                       | ign           |               | -              | Protot       | yping             | 5           | TDR           | P           | rototyp         | ping    | EDR           | Pr              | e-prod  |           | PRR   | •          | roduc   | tio  | n     |       | Inte               | grati       | on      | Co   | nting                         | ency  | co          | On-s  | surfac     | ce<br>ning | Insta  | allation    |  |
| FD      |                                     |                                          | - 1           | Design        | n              | W.           |                   |             | Pre           | ototy       | yping           |         | TDR           | F               | Protot. |           | EDR   | Pre-p      | rod.    | PRR  |       | Pr    | oduct              | tion        |         | Co   | nting                         | ency  | Inte        | egr.  | Com        | miss.      | Insta  | allation    |  |



## **Summary and outlook**

#### And thanks for your attention!

- Ambitious upgrade program, targeting to further our understanding of the QGP and several other aspects of QCD
- LS3 (2026-2030): new **upgrades for LHC Run 4** approaching construction phase
  - **FoCal**:  $\gamma$ , π, jets in the forward region to constrain the gluon nPDF at low x
  - **ITS3**: ultra-thin, truly cylindrical, wafer-scale MAPS: improved secondary vertex reconstruction
- **Beyond Run 4: ALICE 3** to fully exploit the HL-LHC as a heavy-ion collider until 2041
  - Novel, silicon-based detector concept
  - Pioneering several R&D directions with **broad impact on future HEP experiments** (e.g. FCC-ee)
  - Enabling precision measurements of dileptons, (multi-)heavy-flavour hadrons and hadron correlations



# **Backup slides**





### **Physics impact: hadron ID**

- Moderate impact of PID on simpler heavy-flavour probes, e.g. D<sup>0</sup>
- Significant impact of PID on more challenging probes, e.g.  $\Lambda_{\rm c}$ 
  - more important at mid-rapidity
  - RICH important at larger  $p_{T}$



n

 $^{-1}$ 

0

3

 $\Delta \phi$  (rad)

2

**TOF only** 

### **Physics impact: lepton ID**

- Low mass region (→ electrical conductivity)
  - electrons  $\rightarrow$  TOF
- Intermediate mass region (→ temperature, chiral symmetry) requires lepton ID in intermediate p<sub>T</sub> range
  - electrons → TOF + RICH (or e-only Cherenkov?)
  - muons  $\rightarrow$  MID with lower threshold?







#### $\Xi_{cc}^{++} \to \Xi_c^+ + \pi^+ \to \Xi^- + 3\pi^+ \quad \text{and} \quad \Omega_{cc}^+ \to \Omega_c^0 + \pi^+ \to \Omega^- + 2\pi^+$



**Figure 30:** Distance of closest approach (DCA) distribution of reconstructed  $\Xi_{cc}^{++}$  to the primary interaction vertex in Pb–Pb collisions using decay product information only or strangeness tracking for the  $\Xi^-$  baryon in the decay chain of the  $\Xi_{cc}^{++}$ .



**Figure 31:**  $\Xi_{cc}^{++}$  and  $\Omega_{cc}^{+}$  efficiency as a function of  $p_{T}$  with a 2.0 T magnetic field, in the strangeness-tracking channel. Branching ratios of the various channels are given in Table 5 and are not taken into account here.



#### $\Xi_{cc}^{++} \to \Xi_c^+ + \pi^+ \to \Xi^- + 3\pi^+ \quad \text{and} \quad \Omega_{cc}^+ \to \Omega_c^0 + \pi^+ \to \Omega^- + 2\pi^+$



**Figure 32:**  $\Xi_{cc}^{++}$  and  $\Omega_{cc}^{+}$  significance in 0-10% central Pb–Pb collisions at  $\sqrt{s_{NN}} = 5.52$  TeV as a function of  $p_{T}$  with a 2.0 T magnetic field.





**Figure 32:**  $\Xi_{cc}^{++}$  and  $\Omega_{cc}^{+}$  significance in 0-10% central Pb–Pb collisions at  $\sqrt{s_{NN}} = 5.52$  TeV as a function of  $p_{T}$  with a 2.0 T magnetic field.

### **ALICE 3** Soft photon detection

| Component             | Detectors                                                                                                                                                                |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vertexing             | retractable Si-pixel tracker:<br>$\sigma_{\rm pos} \approx 2.5 \mu{\rm m},$<br>$R_{\rm in} \approx 5 {\rm mm},$<br>$X/X_0 \approx 0.1 \%$ for first layer                |
| Tracking              | Silicon pixel tracker:<br>$\sigma_{\rm pos} \approx 10 \mu{\rm m},$<br>$R_{\rm out} \approx 80 {\rm cm},$<br>$L \approx \pm 4 {\rm m}$<br>$X/X_0 \approx 1 \%$ per layer |
| Hadron ID             | Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$<br>RICH: $n \approx 1.006 - 1.03$ ,<br>$\sigma_{\theta} \approx 1.5 \text{ mrad}$                                   |
| Electron ID           | Time of flight: $\sigma_{tof} \approx 20 \text{ ps}$<br>RICH: $n \approx 1.006 - 1.03$ ,<br>$\sigma_{\theta} \approx 1.5 \text{ mrad}$                                   |
| Muon ID               | steel absorber: $L \approx 70 \text{ cm}$<br>muon detectors                                                                                                              |
| ECal                  | Pb-Sci sampling calorimeter                                                                                                                                              |
| ECal                  | PbWO <sub>4</sub> calorimeter                                                                                                                                            |
| Soft photon detection | Forward conversion tracker ——<br>based on silicon pixel tracker                                                                                                          |

Superconducting magnet (2 T)

### Soft photon detection: FCT

Goal: measure the soft photon spectrum predicted by  $\frac{2}{5}$ Low's theorem

- 11 consecutive silicon discs with monolithic pixe trackers
- Pseudorapidity coverage: 4<η<5</li>
- Dipole magnet with a magnetic field of 0.25 T
- PID for e+/e- event veto
- Cherenkov detector behind the FCT needed for good signal over background





