

Production and nuclear modification of B_c mesons in relativistic heavy-ion collisions

Lejing Zhang(张乐晶)

Shandong University

In collaboration with Wen-Jing Xing, Shanshan Cao, Guang-You Qin

Outline of my talk

- □ Introduction to quarkonia
- **\Box** Initial production of B_c
- **D** Linear Boltzmann Transport Model
- **\Box** Medium modification of B_c
- **Given Summary and outlook**

Introduction to quarkonia

1974: Discovery of J/ψ ,

Photo from the Nobel Foundation archive. Samuel Chao Chung Ting

Prize share: 1/2

•

Photo from the Nobel Foundation archive. Burton Richter Prize share: 1/2

proof of charm quark.

1976: Nobel Prize in Physics.

• Suppression of J/ψ yields is a key sign of QGP formation in heavy-ion collisions.

Vacuum

[Mocsy, EPJC 61 (2009) 705]

• Sequential melting of heavy quarkonia serves as a QGP thermometer.

Introduction to quarkonia

Nuclear modification factor:

$$R_{\rm AA}(p_T) \equiv \frac{dN^{AA}/dp_T}{dN^{pp}/dp_T \times \langle N_{coll} \rangle}$$

- PHENIX: strong J/ψ suppression, consistent with color screening.
- ALICE: weak J/ψ suppression, Regeneration of heavy quarkonia is important at high heavy quark density.
- CMS: *Y* mesons do not exhibit recombination effects.

Introduction to B_c mesons

□ pp: small yield □ AA: dissociation, fragmentation and recombination

• The R_{AA} of B_c mesons is greater than one in the low p_T and shows no obvious dependence on centrality.

Initial production of B_c

- Initial charm and bottom quarks: FONLL.
- D^0 and B^+ mesons in pp : c/b quark + Pythia fragmentation.
- B_c in pp:

b quark + fitted fragmentation function.[Braaten, Cheung, Yuan, Phys. Rev. D 48 (1993) R5049] $D_{b \to B_c^-}(z) = N \frac{rz(1-z)^2}{[1-(1-r)z]^6} \times [6-18(1-2r)z+(21-74r+68r^2)z^2 -2(1-r)(6-19r+18r^2)z^3 +3(1-r)^2(1-2r+2r^2)z^4]$

- About 0.3% of *b* quarks fragment into B_c mesons.
- NLO contribution not included in this calculation yet.

LBT model: heavy quark-QGP interaction

- **Boltzmann equation**: $p_a \cdot \partial f_a(x, p) = E_a[C_{el}(f_a) + C_{inel}(f_a)]$
- Elastic scattering:

$$\Gamma_{el}^{a}(\vec{p}_{a},T) = \sum_{b,(cd)} \frac{\gamma_{b}}{2E_{a}} \int \prod_{i=b,c,d} \frac{d^{3}p_{i}}{E_{i}(2\pi)^{3}} f_{b}(E_{b},T)(2\pi)^{4} \delta^{(4)}(p_{a}+p_{b}-p_{c}-p_{d}) \frac{|M_{ab\rightarrow cd}|^{2}}{|M_{ab\rightarrow cd}|^{2}}$$
potential scattering calculation

• Inelastic scattering: $\Gamma_{inel}^{a} = \int dx dl_{\perp}^{2} \frac{dN_{g}^{a}}{dx dl_{\perp}^{2} dt}$ Higher-twist formalism

[X.F. Guo et.al., PRL 85 (2000) 3591; B.-W. Zhang et.al., PRL 93 (2004) 072301]

• Elastic+Inelastic: $P_{tot}^a = 1 - e^{-(\Gamma_{el}^a + \Gamma_{inel}^a)\Delta t}$

Perturbative and non-perturbative interactions

• Heavy quark-QGP interaction potential:

[Xing, Qin, Cao, PLB 838 (2023) 137733]

$$V(r,T) = \left[-\frac{4}{3}\alpha_s \frac{e^{-m_d r}}{r}\right] \left[-\frac{\sigma}{m_s}e^{-m_s r}\right]$$

Yukawa(perturbative) string(non-perturbative)

in which $m_d = a + b * T$ and $m_s = \sqrt{a_s + b_s * T}$ are the respective screening masses, α_s and σ are the respective Yukawa and string interaction strength.

• By Fourier transformation,

$$V(\vec{q},T) = -\frac{4\pi\alpha_s C_F}{m_d^2 + |\vec{q}|^2} - \frac{8\pi\sigma}{(m_s^2 + |\vec{q}|^2)^2}$$

• For $Qq \rightarrow Qq$ process, we express the scattering amplitude with effective potential propagator, $iM = iM_Y + iM_S = \bar{u}\gamma^{\mu}uV_Y\bar{u}\gamma^{\nu}u + \bar{u}uV_S\bar{u}u$

Dissociation of B_c mesons

• Quasi-free dissociation picture: [Wu, Tang, He, Rapp, Phys. Rev. C 109 (2024) 014906]

Dissociation of B_c mesons

- Small momentum exchange dominates in non-perturbative interactions, making the $k^2 > E_B^2$ cut more pronounced than in perturbative interactions.
- Generally, the string interactions result in much larger dissociation rates of B_c mesons than the Yukawa interactions.

B_c production after medium modification

Recombination to *B_c* **mesons**

Instantaneous Coalescence model(ICM)

$$\frac{d^3 N_{B_c}(\vec{p})}{d^3 \vec{p}} = C_r g_{B_c} \int d^3 \vec{p}_c \, d^3 \vec{p}_{\bar{b}} \, \frac{d^3 N_c}{d^3 \vec{p}_c} \frac{d^3 N_{\bar{b}}}{d^3 \vec{p}_c} \, \delta^{(3)}(\vec{p} - \vec{p}_c - \vec{p}_{\bar{b}}) W(\vec{k})$$

- C_r : fit from N_{part} dependence of R_{AA} .
- \mathbf{g}_{B_c} : spin-color statistical factor.
- The medium-modified spectra of c and \overline{b} quarks: LBT model.
- D⁰ and B⁺ in PbPb: c/b quark + hybrid fragmentation coalescence model.
 [Cao, Sun et.al., PLB 807 (2020) 135561]

B_c production after medium modification

\Box Recombination to B_c mesons

Instantaneous Coalescence model (ICM)

• Wigner function: $(2/2)^3$

$$W_{s}(k) = \frac{(2\sqrt{\pi}\sigma_{s})^{3}}{V}e^{-\sigma_{s}^{2}k^{2}}$$
$$W_{P}(k) = \frac{(2\sqrt{\pi}\sigma_{p})^{3}}{V}\frac{2}{3}\sigma_{p}^{2}k^{2}e^{-\sigma_{p}^{2}k^{2}}$$

- $\succ \sigma_{s/p}$ from $B_c(1S/P)$ radii
- V: average volume of the QGP at a fixed temperature (hydrodynamic calculations)
- $B_c(1S)$ regenerated at T = 220 MeV, $B_c(1P)$ at T = 165 MeV.
- □ Fragmentation to *B_c* mesons

Medium modified b quarks (at T = 165 MeV) + vacuum fragmentation function.

Summary of Methods

Nuclear modification factor of B_c

- Coalescence probability increases with heavy quark density, decreases with the QGP volume \longrightarrow weak dependence on N_{part} (used to fix C_r in coalescence).
- Reasonable description of the p_T dependence of R_{AA} .
- Little contribution from initially produced B_c , dominated by coalescence at low p_T , dominated by medium-modified b-quark fragmentation at high p_T .

Predictions on R_{AA} of B_c at RHIC vs. LHC

- RHIC > LHC at low $p_{\rm T}$: dominated by coalescence (lower pp baseline and smaller $V_{\rm QGP}$ at RHIC).
- RHIC < LHC at high p_T : dominated by b-quark energy loss and fragmentation (softer b-quark spectrum at RHIC).
- Semi-analytical calculation at $V(N_{part}) \rightarrow 0$ may not be reliable, will be improved by full MC.

Summary and outlook

- We studied the impact of perturbative and non-perturbative interactions between heavy quarks and QGP on B_c production.
- Most B_c mesons produced in the initial collisions are dissociated.
- Recombination dominates at low p_T and is highly dependent on the QGP volume, while fragmentation dominates at high p_T .
- In the future, we plan to use a full Monte Carlo method to simulate the dissociation, fragmentation, and recombination of B_c mesons, allowing for dynamic production and dissociation of B_c .

Thank You!

backup

 $V = S \cdot \tau \cdot \Delta \eta$

