

In-medium Bottomonium Properties from Lattice NRQCD Calculations with Extended Meson Operators

- Wei-Ping Huang Central China Normal University
	- in collaboration with
- Heng-Tong Ding, Rasmus Larsen, Stefan Meinel, Swagato Mukherjee, Peter Petreczky

The 9th International Symposium on Heavy Flavor Production in Hadron and Nuclear Collisions (HF-HNC 2024), Dec. 6 - 11, 2024 @ Guangzhou

In-medium quarkonium properties are encoded in spectral function, related to Euclidean correlators calculable on the lattice: $r+\infty$

1

Quarkonium as a probe

Quarkonium suppression via color screening in Quark-Gluon Plasma

T. Matsui, H. Satz, PLB178 (1986) 416

Sequential in-medium modifications at finite temperatures in experiments

$$
C(\tau,T)=
$$

 $J-\infty$

$$
d\omega \; \rho(\omega,T) K(\tau,\omega,T)
$$

Motivation: why Lattice NRQCD + extended sources

Relativistic QCD and the source Relativistic QCD and the source

Limited sensitivity in $C(\tau, T)$: $\tau_{\text{max}} = 1/(2T)$

 $C(\tau, T)$ at large τ are needed for lack of overlap with specific state

Heavy quark mass scale is integrated out

Pair creation is not allowed $\Rightarrow \tau_{\text{max}} = 1/T$

Non-optimal overlap with excited states

Better projection onto particular state

Optimized for excited states

Able to study sequential in-medium modifications shown in excited states

A. Mocsy, P. Petreczky, PRD 77, 014501(2008)

P. Petreczky, EPJC 62, 85 (2009)

Large discretization effects $\sim aM_h$

Non-relativistic QCD $+$ $+$ Extended source

N. Brambilla, J. Ghiglieri, et.al., PRD 78, 014017(2008)

More sensitive to thermal effects

R. Larsen, et.al., PRD 100, 074506 (2019) R. Larsen, et.al., PLB 800, 135119 (2020)

Gaussian-shaped factor S. Meinel, PRD 82, 114502 (2010)

Simulation Details

- Background gauge fields with (2+1)-flavor dynamical sea quarks:
- HISQ/tree action
- $-$ Quark mass: $m_s^{\text{phy}}/m_l = 20$ ($m_\pi \approx 160 \text{ MeV}$)
- Two fixed finer lattice spacings: $a = 0.0493$ fm and 0.0602 fm
- Temperature is increased by reducing the temporal extent: $N_{\tau} \in [16, 30]$, $T \in (133, 250)$ MeV
- Bottom quark on the lattice:
- Tree-level tadpole-improved NRQCD action, with $\mathcal{O}(v^6)$ corrections R. Larsen, et.al., PRD 100, 074506 (2019) R. Larsen, et.al., PLB 800, 135119 (2020)
-

S. Meinel, PRD 82, 114502 (2010)

— Bare bottom mass tuning: matching kinetic mass M_{kin,η_b} to its PDG value, leading to $aM_b=0.955(17)$

Results in Vacuum: effective mass

 $M_{\rm eff}(\tau) =$

⁸ Mild effects from different extended sources for ground states

Plateau region from $\tau \sim 0.25$ fm, shorter for excited states with worse SNR

$$
\frac{1}{a} \log \left[\frac{C(\tau, T)}{C(\tau + a, T)} \right]
$$

All vertical scales are calibrated with the spin-averaged mass of 1S bottomonium hereafter

Results in Vacuum: mass spectra

Mass difference: $\Delta M = M - (M_{\eta_b} - 3 M_{\Upsilon})/4$ spin-averaged mass of 1S bottomonium

Results at finite temperatures: effective mass

- S. Overlaps within small *τ*: mild temperature dependence
- As *T* increases: plateau ends at shorter τ , followed by a faster drop at the tail
- Earlier onset of fall-off and steeper slope: P-wave channels are more sensitive to thermal effects \blacklozenge

Measured with Gaussian-smeared sources

Results at finite temperatures: effective mass

Measured with wave-function optimized sources

Steeper slope at tail for higher excited state, with shorter and shorter plateau

High excited states are more sensitive to thermal modifications

Continuum-subtracted correlator

 $C(\tau,T) = \int$

Define continuum-subtracted correlator: $C_{\text{sub}}(\tau, T) = C(\tau, T) - C_{\text{cont}}(\tau)$

Continuum-subtracted effective mass

Dominant peak, related to linear behavior of $M_{\rm eff}^{\rm sub}$ in middle τ

Next: Extract in-medium parameters from $C^{sub}(\tau, \tau)$

$$
F) + A_{\text{cut}}(T)\delta(\omega - \omega_{\text{cut}}(T))
$$

Small, medium-dependent contribution below the main peak,
idle τ related to $M_{\text{eff}}^{\text{sub}}$ at large τ around 1/ T
 T) via physically-motivated parametricization of $\rho^{\text{peak}}(\omega, T)$

$$
M_{\text{eff}}^{\text{sub}}(\tau) = \frac{1}{a} \log \left[\frac{C_{\text{sub}}(\tau, T)}{C_{\text{sub}}(\tau + a, T)} \right]
$$

Parameterization of $ρ^{peak}(ω)$

 $\rho_{\text{med}}(\omega, T) = A_{\text{med}}(T) \exp \left[-\frac{[\omega - M_{\text{med}}(T)]}{2\Gamma^2} \right]$ Gaussian type: $\rho_{med}(\omega,T) = A_{med}(T) \exp \left[-\frac{1}{2\Gamma^2(T)}\right] + A_{cut}(T) \delta (\omega - \omega_{cut}(T))$

NOT physically motivated

11

Cut-Lorentzian type: $\rho_{\text{med}}(\omega, T) = A_{\text{med}}(T)$ $(\omega - M_{\text{med}}(T))$

> $\Gamma(T)$ 2 $+\Gamma^2(T)$ $+ A_{\text{low}}(T) \delta \left(\omega - \omega_{\text{low}}(T) \right)$, n and d are inputs from T-matrix analysis, controlling the tail shape of dominant peak of spectral function $\omega - M_{\text{med}} + n\Gamma_{\text{med}}$ $\left\{ \frac{d}{d} \right\}$) $\times \left\{ 1 - \tanh \left[\frac{d}{d} \right] \right\}$ $\omega - M_{\text{med}} - n\Gamma_{\text{med}}$ *d*] \int S. Y. F. Liu&R. Rapp, PRC 97, 034918 (2018) Z. D. Tang, et.al., arXiv:2411.09132

$$
\frac{d\left(\omega, T\right)}{2\Gamma_{\text{med}}^2(T)} + A_{\text{cut}}(T)\delta\left(\omega - \omega_{\text{cut}}(T)\right)
$$

\nR. Larsen, et.al., PRD 100, 074506 (2019)
\nR. Larsen, et.al., PLB 800, 135119 (2020)
\n
$$
\frac{\Gamma_{\text{med}}(T)}{\Gamma_{\text{end}}(T)} \Theta(\text{cut} - |\omega - M|) + A_{\text{low}}(T)\delta\left(\omega - \omega_{\text{low}}(T)\right)
$$

\nA. Bazavov, et.al., PRD 109, 074504 (2024)

physically appealing

☹ Only valid closely around the main peak

Tail behavior is badly described around cut position, leading to vaguely defined cut-dependent width

Smooth cut-Lorentzian type: $\rho_{\text{med}}(\omega, T) = A_{\text{med}}(T)$ $(\omega - M_{\text{med}}(T))$ $\Gamma(T) =$ 1 $\frac{1}{4}$ { 1 + tanh $\left[$

Better described tail of main peak

In-medium parameters: mass shift

Δ*M* consistent with zero: almost no change in the in-medium masses

⁹ Unscreened real part of heavy quark-antiquark potential is supported up to $T = 250$ MeV

$\Delta M = M_{\text{med}}(T) - M(T = 0)$

- Significant increasement with rising temperatures
- Sequential hierarchy appears in the magnitudes of the thermal widths
- Obvious cut-dependence in widths (tail of main peak matters!); consistency with T-matrix in smooth-cut
- \degree Consistent with zero for $T < 180$ MeV based on current precision; constant fits are preferred
- ⁸ Broadening spectral width leads to overlap of states and thus harder to be distinguished

In-medium parameters: thermal width

Summary

temperature dependences in correlators are presented

 \blacksquare No significant changes in in-medium masses \blacksquare Sequential thermal broadening

In-medium modification is not affected by the choices of extended sources

From Lattice NRQCD calculations with two types of smeared sources within $T \in (133,250)$ MeV,

Backup

Ground state extraction

Ground states are extracted by 1-state fits on correlators within $[\tau_{min}, \tau_{max}]$

2. Excited-state contribution to the effective mass is under statistical uncertainty:

 $\log[f_1(\tau)/f_1(\tau + a)] - \log[f_0(\tau)/f_0(\tau + a)]$ $< 25\% \times$ $\delta_{M_{\text{eff}}}(\tau)$ $M_{\rm eff}(\tau)$

P. Fritzsch, et.al., NPB 865, 397(2012)

Bottomonium system from PDG

Continuum-subtracted effective mass

Measured with wave-function optimized sources

² Larger slopes for higher excited states: High excited states are more sensitive to thermal modifications

