

Charmonium production in isobaric collisions at 200 GeV with the STAR experiment

Yan Wang

State Key Laboratory of Particle Detection and Electronics, Department of Modern Physics, University of Science and Technology of China

Introduction

> Quarkonium provides a good probe of the Quark-Gluon Plasma (QGP)

Dissociation ----> sequential suppression

> Other effects:

- Regeneration
- Cold nuclear matter effects
- Feed down

S. Diagl, P. Petreczky and H. Satz, PLB514, 57 (2001)

- Systematically analyze
 - Different quarkonia
 - System size dependence
 - Transverse momentum dependence
 - Centrality dependence

- > A moderate size collision system
 - All these effects are expected to show strong dependence on collision system size
 - Unique opportunity to study the system size dependence

Isobaric collisions

6B minimum bias events

Large isobar sample

- Precise $p_{\rm T}$ spectra can deepen our understanding of these effects by giving theoretical models stronger constraints
- Unique opportunity to study $\psi(2S)$ -to-J/ ψ yield ratio

The Solenoidal Tracker At RHIC

✓ TPC

Tracking, momentum and energy loss Acceptance: $|\eta| < 1$; $0 \le \phi < 2\pi$

✓ TOF

Time of flight, particle identification Acceptance: $|\eta| < 1$; $0 \le \phi < 2\pi$

✓ BEMC

 e^{\pm} trigger and identification Acceptance: $|\eta| < 1$; $0 \le \phi < 2\pi$

Electron identification

• TPC: $n\sigma_e$ • TOF: $\frac{1}{\beta}$

• BEMC:
$$\frac{E_0}{p}$$

> TPC, TOF, and BEMC used to identify electron

STAR

- Fit unlike-sign invariant mass distribution:
 - J/ψ signal crystal ball function from embedding
 - Combinatorial background Mixed-event technique
 - Residual background linear function

Precise J/ ψ spectra are obtained at 0.2-8 GeV/c p_T range.

Nuclear modification factor (R_{AA}) is defined as:

Nuclear modification factors

STAR

Nuclear modification factors

- Significant suppression observed at low- $p_{\rm T}$ range
- Consistent with Au+Au results for similar $(\langle N_{part} \rangle)$

TAR

- > A decreasing trend with increasing $\langle N_{part} \rangle$ is observed
- > Significant suppression observed at large $\langle N_{part} \rangle$ due to dissociation
- No significant collision system size dependence at RHIC energies

0.0

0.2

0.4

BDT Output

10³

10²

 10^{1}

10⁰

 10^{-1}

 10^{-2}

1.0

0.8

0.6

- A machine learning method is employed to reconstruct the $\psi(2S)$ signal
- XGBoost (Extreme Gradient Boosting) as core
- The consistency between training and testing data
 - Negligible overtraining

Determining the Working Point

The expected significant is consistent with true significant

• The feasibility of the machine learning process

➤The default BDT cut (Working Point) is determined by

- The trend of the expected significant as a function of BDT cut
- Systematic uncertainties stem form the selection of BDT cut

STAR

- Fit unlike-sign invariant mass distribution after combinatorial background subtracted (mixed event):
 - $\psi(2S)$ signal simulation and J/ψ signal
 - Residual background linear function

$\psi(2S)$ to J/ ψ ratio in Zr+Zr & Ru+Ru collision **STAR**

First observation of charmonium sequential suppression in

heavy ion collisions at RHIC $(3.5\sigma, 0-80\%)$

➢ Ratio decreases towards central collisions

Double ratio

 $\gg \psi(2S)$ over J/ ψ double ratio is smaller than that in p+A collisions

Double ratio

 $\gg \psi(2S)$ over J/ ψ double ratio is smaller than that in p+A collisions

≻ Centrality dependence trend seems be more similar to that at SPS than at LHC

- > Increases with $p_{\rm T}$ in isobaric collisions
- Significantly lower than that in p+p and p+A collisions at $p_T < 2 \text{ GeV/c}$
- > Less conclusive at higher p_T due to large uncertainties in both p+p and A+A

STAR, Phys.Rev.D 100 (2019) PHENIX, Phys.Rev.D, 85,092004 (2012) HERA-B, Eur.Phys.J.C 49 (2007) E789, Phys.Rev.D 52 (1995) 1307, 1995.

Significant suppression of charmonium in central heavy-ion collisions

➢ First observation of sequential suppression for charmonium at RHIC

> No significant collision system size dependence of $J/\psi R_{AA}$ for similar $\langle N_{part} \rangle$ at RHIC

Thank you!