

J/ ψ production in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV

Kaifeng Shen (沈凯峰)

State Key Laboratory of Particle Detection and Electronics, Department of Modern Physics,

University of Science and Technology of China

HF-HNC, Dec. 6-11, 2024, Guangzhou, China

➢ Motivation

\triangleright J/ ψ suppression in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV

- \bullet J/ ψ signal reconstruction
- J/ ψ cross section in p+p collisions at $\sqrt{s} = 54.4$ GeV
- ⚫ Nuclear modification factor distribution

➢ Summary

J/ψ production in heavy ion collisions

Modification of J/ ψ **yield:**

- **Dissociation in QGP (like color screening effect, Dynamical screening)**
- **Regeneration**
- Cold nuclear matter effects (like nPDF, Cronin effect, Nuclear absorption)
- Other final state effects (co-mover effect)

Guilaume Falmagne, SQM 2021

(STAR Collaboration) Phys. Lett. B 771 (2017) 13-20

- The J/ψ production has been measured in Au+Au collisions at 39, 62.4 and 200 GeV and in Pb+Pb collisions at 17.3 GeV, 2.76 and 5.02 TeV
- No significant energy dependence of nuclear modification factor within uncertainties at $\sqrt{S_{NN}} \leq 200 \text{ GeV}$
	- Interplay of melting in the QGP, cold nuclear matter effects and regeneration
- \sim 10x more statistics in 54.4 GeV, and this will help better understand the energy dependence of J/ψ suppression, as well as the p_T distributions

The Solenoidal Tracker At RHIC

 \checkmark TPC: Tracking and energy loss

- \checkmark TOF: Time of flight, particle identification
- \checkmark BEMC: Identification of high-p_T electrons
- ⚫ Minimum-bias trigger (VPD or ZDC)

2024/12/10 HF-HNC2024 5

Electron identification

J/ψ raw signal in Au+Au collisions

- J/ψ raw signal are reconstructed through dielectron channel
- J/ ψ signal shape from embedding with additional momentum smearing
- Residual background described by a straight line
- Raw counts extracted by bin counting in $2.7 < M_{ee} < 3.2 \text{ GeV}/c^2$
	- Not full BEMC information used at 54.4 and 200 GeV \rightarrow Implementing full BEMC information can further improve the electron purity

(STAR Collaboration) Phys. Lett. B 771 (2017) 13-20

Efficiency and invariant yield

- The pair efficiency is evaluated by folding the single track efficiency
- The acceptance is showed below: $p_T^e \ge 0.2$ GeV/c, $|\eta_e| \leq 1, |y_{ee}| \leq 1$

 $p_T > 0.2$ GeV/c to exclude coherent photon induced production

 R_{CP} vs (N_{part})

- Peripheral $40 60$ % centrality is used as reference
- A suppression is observed in central Au+Au collisions at 54.4 GeV, similar to that at 62.4 and 200 GeV

2024/12/10 HF-HNC2024 9

p+p baseline

- \triangleright Energy interpolation from the existing total J/ ψ cross section measurements
- \triangleright Energy evolution of the rapidity distribution
- \triangleright Energy evolution of J/ ψ transverse momentum distribution

 $10⁵$ cross section (nb) Aamodt 2011 $\sigma_{J/\psi}$ and σ/dy σ/dy $\sigma_{J/\psi}$ by $\sigma_{J/\psi}$ Khachatryan 2011 $10⁴$ **Acosta 2005** Adare mid 2012 **Adare forward 2012** 10³ 10^{-1} Gribushin 2000 0.8 Snyder 1976 $10²$ **Branson 1977** 10^{-2} • experimental data Badier 1980 0.6 ALICE $\sqrt{s} = 7$ TeV 10 10^{-3} 0.4 PHENIX $\sqrt{s} = 200 \text{ GeV}$ ALICE \sqrt{s} = 2.76 TeV 10^{-4} 0.2 **LHCb** $\sqrt{s} = 7 \text{ TeV}$ 10^{-5} $10⁷$ -0.5 Ω 0.5 $\overline{\mathbf{2}}$ $10³$ $10²$ \sqrt{s} (GeV) 10 y/y_{max} $d^2\sigma$ 1 $= a \times \frac{1}{(1 + b^2)}$ $\sigma = \alpha \times \sigma_{CEM}$ $(1+b^2z_T^2)^n$ $d\sigma/dy z_T dz_T dy$ $= ae^{-\frac{1}{2}}$ $\frac{1}{2}(\frac{y/ymax}{b})$ $z_T dz_T dy$ $\frac{(max)}{b}$)² 1 $d\sigma$ where $y_{max} = \ln(\frac{\sqrt{s}}{m}$) σ $d(y/y_{max})$ $m_{J/\psi}$ where $z_T = p_T / \langle p_T \rangle$

W. Zha, et al., Phys. Rev. C 93 (2016) 024919.

p+p baseline at \sqrt{s} = 54.4 GeV

• **For p+p baseline at 39, 54.4, and 62.4 GeV, they are extracted from phenomenological calculations**

- The p_T dependence of expected J/ ψ differential cross section in p+p collisions at \sqrt{s} = 54.4 GeV and midrapidity
- The uncertainty from interpolation: \sim 11 %

W. Zha, et al., Phys. Rev. C 93 (2016) 024919.

 R_{AA} vs (N_{part})

STAR Collaboration, Phys. Lett. B 771 (2017) 13-20 STAR Collaboration, Phys. Lett. B 797 (2019) 134917 ALICE Collaboration, Nucl. Phys. A 1005 (2021) 121769

- Suppression of J/ ψ production is observed in Au + Au collisions at 54.4 GeV with better precision
- No significant energy dependence is observed among 39, 54.4, 62.4 and 200 GeV, as a function of $\langle N_{\text{part}} \rangle$
- Less regeneration contribution at RHIC energies

R_{AA} vs (N_{part}) : compared with transport model calculations

Within current uncertainties, the model calculations (Tsinghua) can described the p_T integrated R_{AA} at 39, 54.4, and 62.4, as a function of (N_{part})

 R_{AA} vs $\sqrt{s_{NN}}$

- No significant energy dependence is observed within uncertainties up to 200 GeV, interplay of hot and cold matter effects
- Model calculations are both consistent with the observed energy trend

J. Zhao, S. Shi, Eur.Phys.J.C 83 (2023) 6, 511 (private communication).

X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication).

L. Kluberg, Eur. Phys. J. C 43 (2005) 145.

NA50 Collaboration, Phys. Lett. B 477 (2000) 28.

 R_{AA} vs $\sqrt{s_{NN}}$

• BES-2 energy regions are crucial for refining our understanding (Wei Zhang, Tuesday, last but not the least)

 R_{AA} vs p_T

J. Zhao, S. Shi, Eur.Phys.J.C 83 (2023) 6, 511 (private communication).

- R_{AA} seems increase with increasing p_T for 39, 54.4 and 62.4 GeV, less regeneration contributions than those at higher energies
- The p_T spectra at low energies is more complicated

 r_{AA} vs N_{part}

- Each hot or cold effect is expected to be more pronounced within specific p_T ranges
- To compare the impact of the p_T distribution in heavy ion collisions at different energies, the r_{AA} is measured at 54.4 GeV
- There is no significant centrality dependence of the r_{AA} at 54.4 GeV

 r_{AA} vs N_{part}

- To compare the impact of the p_T distribution in heavy ion collisions at different energies, the r_{AA} is measured at 54.4 GeV
- There is no significant centrality dependence of the r_{AA} at 54.4 GeV
- The r_{AA} at 54.4 GeV follows the energy dependence trend

- \triangleright Suppression of J/ ψ in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV has been observed, with improved precision compare to the previous STAR results
- \triangleright The suppression is more significant at lower p_T and central collisions
- \triangleright No significant energy dependence of R_{AA} has been observed in central collisions from 17.3 to 200 GeV
- \triangleright The r_{AA} at 54.4 GeV follows the energy trends

Thanks for your attention

Back up

J/ψ signal templates

- The J/ ψ line-shape from embedding and additional momentum smearing matches data well
- The distribution is fitted by Crystal-ball function
- Fix the shape of the Crystal-ball function from simulation when fitting the J/ ψ raw signal from real data

(STAR Collaboration) Phys. Lett. B 771 (2017) 13 -20

P18ic; AuAu54_production_2017; St_physics

P10ik; AuAu62_production_2017; St_physics

Heavy quarkonia are ideal probes of the Quark-Gluon Plasma (QGP)

Guilaume Falmagne, SQM 2021

Modification of J/ ψ **yield:**

- ➢ **Dissociation in QGP**
	- Color screening effect: suppression of color attraction
	- ⚫ Dynamical processes: collisions with medium partons
- ➢ **Regeneration**
- ➢ Cold nuclear matter effects (like nPDF, coherent energy loss, nuclear absorption)
- \triangleright Other final state effects