

J/ ψ production in Au+Au collisions at $\sqrt{s_{NN}} = 54.4 \text{ GeV}$

Kaifeng Shen (沈凯峰)

State Key Laboratory of Particle Detection and Electronics, Department of Modern Physics,

University of Science and Technology of China

HF-HNC, Dec. 6-11, 2024, Guangzhou, China

➢ Motivation

> J/ ψ suppression in Au+Au collisions at $\sqrt{s_{NN}} = 54.4 \text{ GeV}$

- J/ψ signal reconstruction
- J/ ψ cross section in p+p collisions at $\sqrt{s} = 54.4$ GeV
- Nuclear modification factor distribution

➤ Summary

J/ψ production in heavy ion collisions

• Heavy quarkonia are ideal probes of the Quark-Gluon Plasma (QGP)

Modification of J/ψ yield:

- Dissociation in QGP (like color screening effect, Dynamical screening)
- Regeneration
- Cold nuclear matter effects (like nPDF, Cronin effect, Nuclear absorption)
- Other final state effects (co-mover effect)

2024/12/10

Guilaume Falmagne, SQM 2021

(STAR Collaboration) Phys. Lett. B 771 (2017) 13-20

- The J/ψ production has been measured in Au+Au collisions at 39, 62.4 and 200 GeV and in Pb+Pb collisions at 17.3 GeV, 2.76 and 5.02 TeV
- No significant energy dependence of nuclear modification factor within uncertainties at $\sqrt{S_{NN}} \le 200 \text{ GeV}$
 - Interplay of melting in the QGP, cold nuclear matter effects and regeneration
- ~10x more statistics in 54.4 GeV, and this will help better understand the energy dependence of J/ψ suppression, as well as the p_T distributions

The Solenoidal Tracker At RHIC

✓ TPC: Tracking and energy loss

- ✓ TOF: Time of flight, particle identification
- ✓ BEMC: Identification of high- p_T electrons
- Minimum-bias trigger (VPD or ZDC)

2024/12/10

HF-HNC2024

Electron identification

J/ψ raw signal in Au+Au collisions

- J/ψ raw signal are reconstructed through dielectron channel
- J/ψ signal shape from embedding with additional momentum smearing
- Residual background described by a straight line
 - Raw counts extracted by bin counting in $2.7 < M_{ee} < 3.2 \text{ GeV}/c^2$

Not full BEMC information used at 54.4 and 200 GeV \rightarrow Implementing full BEMC information can further improve the electron purity

$\sqrt{s_{NN}}$	39 GeV	54.4 GeV	62.4 GeV	200 GeV
S/B	0.34	0.06	0.19	0.03
Significance	10	24	9	22

٠

(STAR Collaboration) Phys. Lett. B 771 (2017) 13-20

Efficiency and invariant yield

- The pair efficiency is evaluated by folding the single track efficiency
- The acceptance is showed below: $p_T^e \ge 0.2 \text{ GeV/c},$ $|\eta_e| \le 1, |y_{ee}| \le 1$

 $p_T > 0.2 \text{ GeV/c}$ to exclude coherent photon induced production

 $R_{CP} vs \langle N_{part} \rangle$

- Peripheral 40 60 % centrality is used as reference
- A suppression is observed in central Au+Au collisions at 54.4 GeV, similar to that at 62.4 and 200 GeV

HF-HNC2024

p+p baseline

> Energy interpolation from the existing total J/ψ cross section measurements

Energy evolution of the rapidity distribution

 \blacktriangleright Energy evolution of J/ ψ transverse momentum distribution

10⁵ cross section (nb) ⁻xe^m λ× δ δ δ δ δ δ δ δ δ δ δ Aamodt 2011 ~ਰੱ|ਮੂੰ 10 $d\sigma/dy$ Khachatryan 2011 $\sigma_{I/\psi}$ рт l N 10⁴ Acosta 2005 <u>1.0</u> d⊲/dy Adare mid 2012 Adare forward 2012 10³ 10⁻¹ Gribushin 2000 Snyder 1976 0.8 10² Branson 1977 10⁻² experimental data Badier 1980 0.6 ALICE VS = 7 TeV 10 10⁻³ 0.4 PHENIX Vs = 200 GeV ALICE Vs = 2.76 TeV **10⁻⁴** 0.2 LHCb vs = 7 TeV **10⁻⁵** 10⁻¹ -0.5 0.5 2 0 4 10² 10³ 10⁴ √s (GeV) 10 y/y_{max} $\frac{1}{d\sigma/dy}\frac{d^2\sigma}{z_T dz_T dy} = a \times \frac{1}{(1+b^2 z_T^2)^n}$ $\sigma = \alpha \times \sigma_{CEM}$ where $y_{max} = \ln(\frac{\sqrt{s}}{m_{1/4b}})$ $\frac{1}{\sigma}\frac{d\sigma}{d(y/y_{max})} = ae^{-\frac{1}{2}(\frac{y/y_{max}}{b})^2}$ where $z_T = p_T / \langle p_T \rangle$

W. Zha, et al., Phys. Rev. C 93 (2016) 024919.

p+p baseline at $\sqrt{s} = 54.4 \text{ GeV}$

• For p+p baseline at 39, 54.4, and 62.4 GeV, they are extracted from phenomenological calculations

- The p_T dependence of expected J/ ψ differential cross section in p+p collisions at $\sqrt{s} = 54.4$ GeV and midrapidity
- The uncertainty from interpolation: $\sim 11 \%$

W. Zha, et al., Phys. Rev. C 93 (2016) 024919.

 $R_{AA} vs \langle N_{part} \rangle$

STAR Collaboration, Phys. Lett. B 771 (2017) 13-20 STAR Collaboration, Phys. Lett. B 797 (2019) 134917 ALICE Collaboration, Nucl. Phys. A 1005 (2021) 121769

- Suppression of J/ψ production is observed in Au + Au collisions at 54.4 GeV with better precision
- No significant energy dependence is observed among 39, 54.4, 62.4 and 200 GeV, as a function of $\langle N_{part} \rangle$
- Less regeneration contribution at RHIC energies

R_{AA} vs (N_{part}) : compared with transport model calculations

• Within current uncertainties, the model calculations (Tsinghua) can described the p_T integrated R_{AA} at 39, 54.4, and 62.4, as a function of $\langle N_{part} \rangle$

 $R_{AA} vs \sqrt{s_{NN}}$

- No significant energy dependence is observed within uncertainties up to 200 GeV, interplay of hot and cold matter effects
- Model calculations are both consistent with the observed energy trend

J. Zhao, S. Shi, Eur.Phys.J.C 83 (2023) 6, 511 (private communication).

X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication).

L. Kluberg, Eur. Phys. J. C 43 (2005) 145.

NA50 Collaboration, Phys. Lett. B 477 (2000) 28.

 $R_{AA} vs \sqrt{s_{NN}}$

• BES-2 energy regions are crucial for refining our understanding (Wei Zhang, Tuesday, last but not the least)

R_{AA} vs p_T

J. Zhao, S. Shi, Eur. Phys. J.C 83 (2023) 6, 511 (private communication).

- R_{AA} seems increase with increasing p_T for 39, 54.4 and 62.4 GeV, less regeneration contributions than those at higher energies
- The $p_{\rm T}$ spectra at low energies is more complicated

r_{AA} vs N_{part}

- Each hot or cold effect is expected to be more pronounced within specific p_T ranges
- To compare the impact of the p_T distribution in heavy ion collisions at different energies, the r_{AA} is measured at 54.4 GeV
- There is no significant centrality dependence of the r_{AA} at 54.4 GeV

r_{AA} vs N_{part}

- To compare the impact of the p_T distribution in heavy ion collisions at different energies, the r_{AA} is measured at 54.4 GeV
- There is no significant centrality dependence of the r_{AA} at 54.4 GeV
- The r_{AA} at 54.4 GeV follows the energy dependence trend

- Suppression of J/ ψ in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV has been observed, with improved precision compare to the previous STAR results
- \succ The suppression is more significant at lower p_T and central collisions
- > No significant energy dependence of R_{AA} has been observed in central collisions from 17.3 to 200 GeV
- > The r_{AA} at 54.4 GeV follows the energy trends

Thanks for your attention

Back up

J/ψ signal templates

- The J/ ψ line-shape from embedding and additional momentum smearing matches data well
- The distribution is fitted by Crystal-ball function
- Fix the shape of the Crystal-ball function from simulation when fitting the J/ ψ raw signal from real data

(STAR Collaboration) Phys. Lett. B 771 (2017) 13-20

P18ic; AuAu54_production_2017; St_physics

P10ik; AuAu62_production_2017; St_physics

MB	Events
580001	201179346
580021	1132925521
580011	1040074

MB	Events
270001	6158445
270021	126783290
270011	20692702

Heavy quarkonia are ideal probes of the Quark-Gluon Plasma (QGP)

Guilaume Falmagne, SQM 2021

Modification of J/ ψ yield:

- Dissociation in QGP
 - Color screening effect: suppression of color attraction
 - Dynamical processes: collisions with medium partons

Regeneration

- Cold nuclear matter effects (like nPDF, coherent energy loss, nuclear absorption)
- Other final state effects