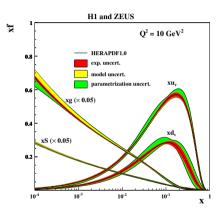
Saturation effects in heavy vector meson photoproduction

Jani Penttala

In collaboration with Christophe Royon

Based on 2411.14815

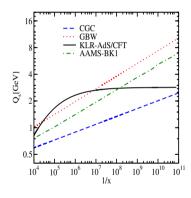
University of California, Los Angeles
SURGE collaboration


Heavy Flavor Symposium 2024 Guangzhou, China

Gluon saturation at high energy

- HERA: rapid growth of gluon distribution at small x
- Growth cannot go on indefinitely: violation of unitarity
- Will eventually be tamed by gluon recombination effects
- Prediction from theory: **gluon saturation**
- Signs of saturation in the experimental data but no definite evidence

H1 and ZEUS (0911.0884)


Searching for saturation

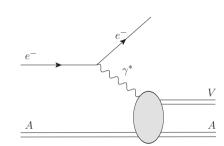
- Saturation effects characterized by the saturation scale Q_s^2
- For saturation to be important:

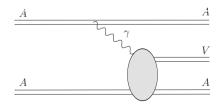
Momentum scale in the process has to be comparable to Q_s^2

- However: Q_s^2 is quite small...
 - Protons: $Q_{s,p}^2 = \mathcal{O}(1 \text{ GeV})$
 - Nuclei: $Q_{s,A}^2 \sim A^{1/3} Q_{s,p}^2$
 - ⇒ Nuclear enhancement of saturation!
- Energy dependence: $Q_s^2 \sim 1/x^{0.3}$
- Search for saturation:

Need a high energy (small x) and a low momentum scale

Rezaeian (1001.5266)

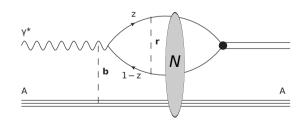

Exclusive vector meson production


Ryskin, Z.Phys.C 57 (1993) 89-92

$$\frac{\mathrm{d}}{\mathrm{d}t}\sigma(\gamma^* + A \to V + A) \sim [xg(x)]^2$$

- ⇒ Very sensitive to the gluon structure of the target!
 - Heavy vector mesons:
 Heavy quark mass makes the process perturbative
 - Mass also low enough for saturation!
 - Can be measured in:
 - DIS: Electron-ion collisions (HERA, EIC, ...)
 - Ultra-peripheral collisions (LHC, ...)

See Zaochen Ye's talk on Monday



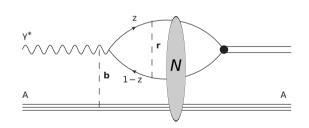
Vector meson production at the leading order in the dipole picture

Invariant amplitude for exclusive vector meson production

$$-i\mathcal{A}^{\lambda} = 2\int \mathrm{d}^{2}\mathbf{b}\,\mathrm{d}^{2}\mathbf{r}\,\frac{\mathrm{d}z}{4\pi}e^{-i\mathbf{b}\cdot\mathbf{\Delta}}\mathbf{\Psi}_{\gamma^{*}}^{q\bar{q}}(\mathbf{r},z)N(\mathbf{r},\mathbf{b},\mathbf{x}_{\mathbb{P}})\mathbf{\Psi}_{V}^{q\bar{q}*}(\mathbf{r},z), \qquad t = -\mathbf{\Delta}^{2}$$

- $\Psi_{\gamma^*}^{q\bar{q}}$: Photon light-cone wave function
- N: Dipole-target scattering amplitude
- $\Psi_V^{q\bar{q}}$: Vector meson light-cone wave function

Vector meson production at the leading order in the dipole picture


Invariant amplitude for exclusive vector meson production

$$-i\mathcal{A}^{\lambda} = 2\int \mathrm{d}^{2}\mathbf{b}\,\mathrm{d}^{2}\mathbf{r}\,\frac{\mathrm{d}z}{4\pi}e^{-i\mathbf{b}\cdot\mathbf{\Delta}}\mathbf{\Psi}_{\gamma^{*}}^{q\bar{q}}(\mathbf{r},z)N(\mathbf{r},\mathbf{b},\mathbf{x}_{\mathbb{P}})\mathbf{\Psi}_{V}^{q\bar{q}*}(\mathbf{r},z), \qquad t = -\mathbf{\Delta}^{2}$$

 Dependence on energy W in the dipole amplitude:

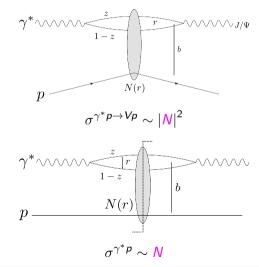
$$\mathbf{x}_{\mathbb{P}} = rac{Q^2 + M_V^2 - t}{W^2 + Q^2 + m_N^2}$$

• $Q^2 = 0$ for photoproduction

Vector meson wave function

- Meson wave function is nonperturbative has to be modeled
- Various different approaches:
 Nonrelativistic QCD, basis light-front quantization...
- We use the Boosted Gaussian that has been found to work well phenomenologically: Kowalski, Motyka, Watt (hep-ph/0606272)

$$\phi_{\lambda}(r,z) = \mathcal{N}_{\lambda} \exp\left(-rac{m_Q^2 \mathcal{R}^2}{8z(1-z)} - rac{2z(1-z)r^2}{\mathcal{R}^2} + rac{m_Q^2 \mathcal{R}^2}{2}
ight)$$


where \mathcal{N}_{λ} , \mathcal{R} are parameters fixed by normalization and leptonic decay width

Dipole amplitude N

- Describes the interaction with the target
- High energy: eikonal approximation

$$N(\mathbf{x},\mathbf{y},x_{\mathbb{P}}) = 1 - rac{1}{N_c} \left\langle \mathsf{Tr} \ V(\mathbf{x}) V^\dagger(\mathbf{y})
ight
angle_{x_{\mathbb{P}}}$$

- Universal: appears in different processes
- Energy dependence given by a perturbative evolution equation

Estimating saturation effects

Balitsky-Kovchegov equation

$$\frac{\partial}{\partial \log 1/x} N(\mathbf{x}_0, \mathbf{x}_1) = \frac{N_c \alpha_s}{2\pi^2} \int d^2 \mathbf{x}_2 \frac{\mathbf{x}_{01}^2}{\mathbf{x}_{20}^2 \mathbf{x}_{21}^2} \times [N(\mathbf{x}_0, \mathbf{x}_2) + N(\mathbf{x}_1, \mathbf{x}_2) - N(\mathbf{x}_0, \mathbf{x}_1) - N(\mathbf{x}_0, \mathbf{x}_2)N(\mathbf{x}_1, \mathbf{x}_2)]$$

- Saturation effects introduced by the nonlinear term in the BK equation
- Without nonlinear term: BFKL evolution
 - ⇒ Compare BK and BFKL evolutions to estimate saturation effects
- We also include the dependence on the impact parameter (usually neglected)
 - Neglecting it can lead to overestimating saturation effects JP et al. (2411.13533)

Initial condition for the high-energy evolution

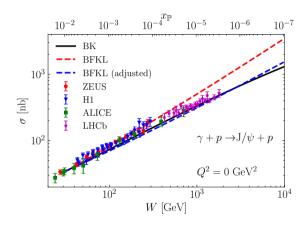
• Initial condition chosen as the impact-parameter-dependent McLerran–Venugopalan

$$\mathbf{r} = \mathbf{x} - \mathbf{y}, \ \mathbf{b} = \frac{1}{2}(\mathbf{x} + \mathbf{y})$$

$$N(\mathbf{x}, \mathbf{y}) = 1 - \exp\left(-\int \mathrm{d}^2\mathbf{z} \, \kappa T(\mathbf{z}) \Big[\mathcal{K}_0(m|\mathbf{x} - \mathbf{z}|) - \mathcal{K}_0(m|\mathbf{y} - \mathbf{z}|) \Big]^2 \right)$$

- T(z) = the thickness function describing the shape of the target
- \bullet $\kappa =$ constant describing the strength of the color field
- m = infrared regulator

Proton


- T(z) = Gaussian
- Parameters fixed by exclusive J/ψ production data

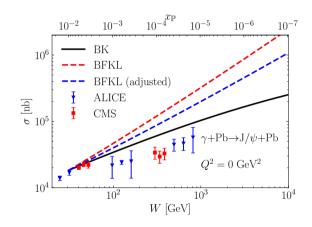
Lead

- From proton to nucleus:
 Change only T(z)
- T(z) = Woods-Saxon

Exclusive J/ψ production: proton targets

- Slight difference between BFKL and BK in the slope
 - Can be compensated by adjusting α_s for BFKL
- Proton data described well by both BK and BFKL equations

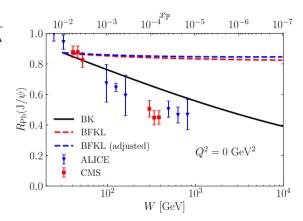
JP, Royon (2411.14815)


Exclusive J/ψ production: nuclear targets

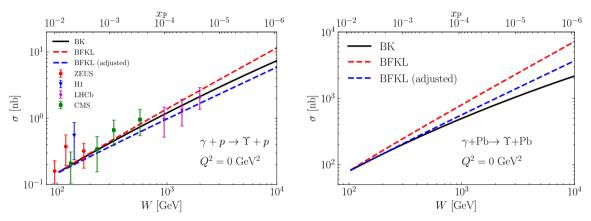
- Fit the model to the proton data
 - ⇒ Predictions for heavy nuclei
- Differences between BK and BFKL:
 - a factor of 2 for $W\sim 1000\,{\rm GeV}$
- BFKL results linear as predicted
- BK describes the data much better
- Still not exact agreement:

A well-known problem, see e.g.

Mäntysaari, Salazar, Schenke (2312.04194)


JP et al. (2411.13533)

JP, Royon (2411.14815)


Exclusive J/ψ production: nuclear suppression

- Nuclear suppresstion factor: $R_A = \sqrt{\sigma_A/\sigma_{IA}}$ where $\sigma_{IA} = \frac{\mathrm{d}\sigma^\rho}{\mathrm{d}t}\big|_{t=0} \times \int \mathrm{d}t \, |F_A(t)|^2$ is the impulse approximation
- Without saturation: $R_A \approx 1$
- BFKL essentially constant
 - Linear evolution: energy dependence for protons and nuclei expected to be similar
 - Clear disagreement with the data
 - Saturation provides a natural explanation

JP, Royon (2411.14815)

Υ production

- ullet Saturation effects much smaller \Rightarrow Not expecting sizable differences even at the LHC
- ullet Follows from the large mass of Υ

JP, Royon (2411.14815)

Summary

- Gluon saturation expected at the high-energy limit
- Difficult to measure: need both a high energy and a low momentum scale
- Exclusive heavy vector meson photoproduction is a promising process
 - Diffractive process ⇒ sensitive to the gluon density
 - Heavy quark mass ⇒ large enough to be perturbative, small enough for saturation
- Compare linear BFKL and nonlinear BK evolution to estimate saturation effects
- Proton targets: no sign of saturation in the current data
- ullet Pb targets: ${
 m J}/\psi$ shows a clear preference for BK evolution
 - Saturation effects already visible in the LHC data?