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Introduction
• Spontaneous chiral symmetry breaking 

• One of the key features of QCD 

• Origin of mass 

• Chiral magnetic effect, chiral vortical effect… 

• Non-perturbative, high baryon chemical potential 

• Challenging for traditional methods



Introduction
• Quantum computing: a promising new method 

• Topics of interest: 

• Real-time evolution 

• Non-perturbative physics 

• Non-Abelian gauge theory 

• Thermal states 

• …



Model
• 1+1D SU(2) model: simplest non-Abelian model 

 

• Chiral condensate:  

• Discritization: Staggered fermion 
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Eliminating Gauge Field
• Gauss’s Law  

 

• Local gauge transformation 
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Jordan-Wigner transformation
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Algorithm: Variational Method
• Finite temperature: the Gibbs state 

 

 

 

• Variational method 

• Parametrization 

 

ρ(β) =
1

Z(β)
e−βH, Z(β) = Tr(e−βH)

ρ(α) = ∑
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Pi(β) |φi⟩⟨φi |
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Eigenstate of H 
independent of β

Analytically solvable



Algorithm Workflow

Choose parameters 
m, μ, g

Optimize  at a 
certain 

U(θ)
T

Construct  density 
matrix ρ

Calculate 
observables Tr(Oρ)

Choose another T



Algorithm: Variational Method
• Loss Function : Free energy 

 

                                 

                        

• The variational method is only used once for all different temperatures. 

• Many part of the calculation is analytical.

F = E − TS

= Tr [ρH] + TTr [ρ log ρ]
= ∑

i

Pi [Ei + T ln Pi]



Algorithm: Variational Method
• Construction of : QAOA ansatz 

 

 

 

• Each  perserves the same symmetries as , so that  also preserves the 
symmetries.

U(α)

U(α) =
p

∏
i=1

n

∏
j=1

exp(iαijHj)

H = H1 + H2 + ⋯ + Hn

[Hi, Hj] ≠ 0

Hi H U(α)



Algorithm: Monte-Carlo

• Monte-Carlo in optimization 

• Randomly select a small set of states, do the optimization with this set until 
finished. 

• Select another set, continue the optimization with the new set. 

• Repeat until parameters convergence. 

• In practical, a set of 20 qubits is used for each step.



Algorithm: Monte-Carlo

• Monte-Carlo in thermal state construction 

• Start from  such that  is the ground state. 

• Randomly flip one qubit of  to get a new state  

• Calculate the energy expectation value  

• If , accept the new state, otherwise, accept it with the probability  

• If the new state is rejected, the old state is added into the mixed state again. 

• Repeat until number of states reaches a predetermined limit.

| i⟩ U | i⟩

| i⟩ | j⟩

Ej⟨i |U†HU | i⟩

Ej < Ei e−(Ej−Ei)/T



Results: Full Gibbs State

• 8 qubits, . 

• Optimization done at highest temperature. 

• All 256 sates are used to construct the Gibbs state. 

• The VQE method produces the Gibbs state very 
accurately.

μ = 0

Chiral condensate at finite temperature



Results: Full Gibbs State

• 8 qubits, . 

• The grond state changes at high chemical 
potential. 

• Consistent with theoretical prediction.

m/g = 5

Chiral condensate at finite temperature



Results: Monte-Carlo

• 8 qubits,  1000 states for each sampling. 

• The accuracy is good. 

• Monte-Carlo method is not effective for 
small system. (1000 vs. 256)

Chiral condensate at finite temperature



Results: Monte-Carlo
• 12 qubits, 1000 (left) and 2000 (right) 

states. 

• Required number of sampling 
increases only as power law of 
number of qubits. 

• 2000 vs. 4096 is already effective.

Chiral condensate at finite temperature



Results: Real QC results

• 8 qubits, results from IBM’s quantum hardware. 

• A simpler ansatz for  is used. 

• Optimization is still done classically. 

• No error mitigation used. 

• Our algorithm can achieve good precision on real 
QC.

U

Chiral condensate at finite temperature



Results: Real QC results

• Good accuracy for all the eigenenergy. 

• Promising to apply to larger systems.

Relative error of the eigenenergy



Summary and Outlook

• We propose a framework with VQE and Monte-Carlo method to simulate thermal 
states on quantum computers. 

• With this frame work, the chiral condensate of 1+1D SU(2) gauge model is studied. 

• Our method is efficient and accurate in classical simulations as well as on real QCs. 

• Apply to massless fermions: spontaneous symmetry breaking. (Paper to appear 
soon) 

• Extend to larger systems or even higher dimensions.


