Heavy Flavor Jets in Primordial QCD Soup

9th International Symposium on heavy flavor production in hadron and Nuclear Collisions, Guangzhou China, 2024.12.06-11

Outline

Introduction

Heavy flavor jet observables

- 1) jet yields
- 2) Dead-Cone
- 3) Energy-Energy Correlators
- 4) Jet FF, angularity, groomed z_g , R_g ...

Summary

Deconfinement and QGP

It would be interesting to explore new phenomena by distributing high energy or high nuclear density over a relatively large volume.

T. D. Lee (1978)

Lattice QCD predicts phase of thermal QCD matter with sharp rise in number of degrees of freedom near T_c =170MeV.

Jet quenching

Parton energy has been proposed as an excellent probe of the hot/dense matter created at HIC.

Jet quenching at RHIC and LHC

$$R_{AA} = \frac{\text{Yield}_{AA} / \langle N_{\text{binary}} \rangle_{AA}}{\text{Yield}_{pp}}$$

Fingerprints of jet quenching

7

Leading hadron production

Leading hadron production

Full jets

What is a Full Jet?

 Jet is an approximate image of the parent parton. Jet is defined by a jet finding algorithm, which maps the momenta of the final state particles into the momenta of a certain number of jets:

World inside a jet

Observables of heavy flavor jets

inclusive D/B jet; b b\bar di-jets; gamma + Q jet; Z/W + Q jet;

••••

Q jet radial profile; Q jet FF; Dead-cone; EEC; Q jet angularity; groomed jets;

....

sphericity; thrust; Jet broadening; Fox-Wolfram moment;

....

HF jet yields

HF jet substructure

Inter-HF jet properties

HF jet in quark soup: yield production

Heavy quark energy loss

 Heavy quark energy loss will be suppressed due to deadlcone effect relative to light quark.

BWZ, E Wang, X N Wang, PRL (2004); NPA (2015)

Dokshitzer, Kharzeev, PLB (2011); Djordjevic, Gyulassy, PRC (2013)

Energy loss of heavy quark

Simon Wicks et al. Nucl. Phys. A 784 (2007) 426-442

Suppression of HF jets

 Heavy flavor jet should be less suppressed as compared to inclusive jets due to dead-cone effect.

ATLAS, arXiv: 2204.13530

W Dai, S Wang, S Zhang, BWZ, E Wang, CPC (2020)

S Wang, Dai, E Wang, X Wang, BWZ, Symmetry (2023)

Nuclear modification factor of D⁰ jets

 In-medium energy loss depends on both the difference between quark and gluon coupling strength and quark mass.

ALICE, 2409.11939

Heavy-flavor jet at NLO in p+p

E. Norrbin, T. Sjöstrand, EPJC(2000);Andrea Banfi, Gavin P. Salam, Giulia Zanderighi, JHEP(2007)

Heavy-flavor jet yield in p+p

• $g \rightarrow Q$ -jet shows more dispersive structures than the HQ-initiated one, $Q \rightarrow Q$ -jet.

Sa Wang, Shuang Li, Yao Li, BWZ, Enke Wang, 2410.21834

Improved Langevin equations

SHELL: Simulating Heavy quark Energy Loss by Langevin equations

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \frac{\vec{p}(t)}{E} \Delta t$$

$$\vec{p}(t + \Delta t) = \vec{p}(t) - \Gamma(p)\vec{p}\Delta t + \vec{\xi}(t)\Delta t - \vec{p}_g$$
G.D. Moore et al.,
PRC71(2005)064904;
S. Cao G.Y. Qin and S.A. Base
PRC88 (2013) 044907

Diffusion coefficient κ and drag coefficient Γ are correlated by

$$\kappa = 2\Gamma ET = \frac{2T^2}{D_s}$$

Higher-Twist approach:

$$\frac{dE}{dL} = -\frac{\alpha_s C_s \mu_D^2}{2} ln \frac{\sqrt{ET}}{\mu_D}$$

Phys.Rev.Lett. 85 (2000) 3591-3594; Phys.Rev.Lett. 93 (2004)072301; Phys.Rev. D85 (2012) 014023

$$\frac{dN}{lxdk_{\perp}^2 dt} = \frac{2\alpha_s C_s P(x)\hat{q}}{\pi k_{\perp}^4} \sin^2(\frac{t-t_i}{2\tau_f}) (\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 m^2})^4$$

Heavy-flavor jet yield suppression

• Due to the significant contribution of $g \rightarrow c$ -jet, R_{AA} of c-jet will be comparable or even smaller than that of inclusive jet.

Sa Wang, Shuang Li, Yao Li, BWZ, Enke Wang, 2410.21834

Heavy-flavor jet yield suppression

Strategy 1: $g \rightarrow Q$ -jet two HF quarks in one jet, p_T>2 GeV

Strategy 2: $Q \rightarrow Q$ -jet only one HF quarks in the jet, with recoil jet p_T>10 GeV, with angle separation larger than $2/3\pi$.

Sa Wang, Shuang Li, Yao Li, BWZ, Enke Wang, 2410.21834

Dead-Cone: Direct Observation

Dead-cone effect in vacuum

 A direct observation of dead-cone effect in p+p is made with an iterative declustering techniques by ALICE.

$$dP_{HQ} \simeq \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{k_\perp^2 dk_\perp^2}{(k_\perp^2 + \omega^2 \theta_0^2)^2} = dP_0 \left(1 + \frac{\theta_0^2}{\theta^2}\right)^2$$

Dead-cone effect in vacuum

 A direct observation of dead-cone effect in p+p is made with an iterative declustering techniques by ALICE.

Dead-cone effect in A+A

W Dai, M Z Li, BWZ, E Wang, arXiv: 2205.14668

Mean value of emission angle

$E_{ m Radiator}$	Inclusive jets		D^0 jets		
	$\langle heta angle_{ m spl}$	$N_{\rm spl}$	$\langle heta angle_{ m spl}$	$N_{\rm spl}$	
$5-10~{ m GeV}$	0.227	1.358	0.277	1.233	pp
	0.256	1.405	0.280	1.280	AA
$10-20 { m ~GeV}$	0.220	1.810	0.244	1.510	pp
	0.254	1.757	0.263	1.600	AA
$20-35~{ m GeV}$	0.232	2.040	0.232	1.822	pp
	0.249	1.977	0.251	1.860	AA

W Dai, M Z Li, BWZ, E Wang, arXiv: 2205.14668

Energy-Energy Correlator (EEC)

Energy-energy correlator of jets

EEC of inclusive jets in vacuum

 ALICE Collaboration has measured EEC of inclusive jets in p+p collisions at 5.02TeV.

EEC of inclusive jets in HICs

• EEC of inclusive jet are measured in PbPb by CMS.

 $\operatorname{EEC}(\Delta r) = \frac{1}{W_{\text{pairs}}} \frac{1}{\delta r} \sum_{\text{jets} \in [p_{\mathrm{T},1}, p_{\mathrm{T},2}]} \sum_{\text{pairs} \in [\Delta r_a, \Delta r_b]} \left(p_{\mathrm{T},i} \, p_{\mathrm{T},j} \right)^n$

CMS, HIN-23-004-pas

EEC of heavy-flavor jet in vacuum

• The EEC for beauty and charm jets illustrating a UV scaling behavior at large angles, and a mass dependent suppression at small angles.

Evan Craft, Kyle Lee, Bianka Meçaj, Ian Moult, 2210.09311

EEC of HF jet in a brick QGP

• Energy correlators of HF jets in a brick-QGP medium are calculated.

C Andres, F Dominguez, J Holguin, C Marquet, I Moult, 2307.15110

EEC of heavy-flavor jet in A+A

• A clear flavor hierarchy is observed for jet EEC in both vacuum and QGP due to the mass effect.

Wen-Jing Xing, Shanshan Cao, G.Y. Qin, X.N. Wang, 2409.12843

EEC of heavy-flavor jet in p+A and A+A

The EEC distributions for all quark-tagged jets in A+A exhibit a noticeable shift towards larger R_L region.
 The CNM effect is moderate for jet EEC.

Wei Dai's talk, 12.10

Ke-Ming Shen, Shi-Yong Chen, Yu-Jie Huang, Wei Dai, BWZ, 2410.05081

Other substructures

Heavy-flavor jet fragmentation function

• $z_{||}$ characterizes the jet momentum carried by the D^0 meson along the jet axis direction.

Yao Li, Sa Wang, BWZ, Phys. Rev. C 108, 024905 (2023)

Heavy-flavor jet fragmentation function

 The jet-cone size R does not influence the energy loss of charm quarks, but the energy loss of the tagged charged jet decreases with R.

Yao Li, Sa Wang, BWZ, Phys. Rev. C 108, 024905 (2023)

Heavy-flavor jet fragmentation function

 Harder jet fragmentation function of b jets compared to c jets in vacuum. Stronger nuclear modifications of B⁰-jet z_{||} distributions compared to a D⁰-jet.

Yao Li, Sa Wang, BWZ, Phys. Rev. C 108, 024905 (2023)

Generalized angularities

 The generalized jet angularities, quantifying the transverse momentum and angular distributions of constituents within the jet, form a class of jet substructure observables.

Yao Li, Shi-Yong Chen, Weixi Kong, Sa Wang, BWZ, 2409.12742

Angularities of heavy-flavor jets

Jet quenching in the QGP may widen the angularity distributions of heavy-flavor jets in Pb+Pb relative to p+p.
For a larger jet radius, a more significant broadening of jet angularities could be obtained.

Yao Li, Shi-Yong Chen, Weixi Kong, Sa Wang, BWZ, 2409.12742

z_g and R_g of heavy-flavor jet

• The mass hierarchy in z_g of inclusive, D^0 -tagged, B^0 -tagged jets and competition between mass effects and Casimir color factors in R_q can also be observed in PbPb collisions.

Qing Zhang, Zi-Xuan Xu, Wei Dai, BWZ, Enke Wang, 2303.06820

Recap

• Heavy quark jets provide a very powerful tool to study QCD dynamics and the properties of the QGP.

 Several interesting HF jet observables in HICs are discussed: HF jet yields, dead-cone, ECC, jet FF, angularity, groomed HF jet z_g R_g, etc.

• The 'mass' is mysterious, but very powerful. It is silent most of the time, but when it speaks, it has a final say.

Improved Langevin equations

SHELL: Simulating Heavy quark Energy Loss by Langevin equations

$$\vec{x}(t + \Delta t) = \vec{x}(t) + \frac{\vec{p}(t)}{E} \Delta t$$

$$\vec{p}(t + \Delta t) = \vec{p}(t) - \Gamma(p)\vec{p}\Delta t + \vec{\xi}(t)\Delta t - \vec{p}_g$$
G.D. Moore et al.,
PRC71(2005)064904;
S. Cao G.Y. Qin and S.A. Base
PRC88 (2013) 044907

Diffusion coefficient κ and drag coefficient Γ are correlated by

$$\kappa = 2\Gamma ET = \frac{2T^2}{D_s}$$

Higher-Twist approach:

$$\frac{dE}{dL} = -\frac{\alpha_s C_s \mu_D^2}{2} ln \frac{\sqrt{ET}}{\mu_D}$$

Phys.Rev.Lett. 85 (2000) 3591-3594; Phys.Rev.Lett. 93 (2004)072301; Phys.Rev. D85 (2012) 014023

$$\frac{dN}{lxdk_{\perp}^2 dt} = \frac{2\alpha_s C_s P(x)\hat{q}}{\pi k_{\perp}^4} \sin^2(\frac{t-t_i}{2\tau_f}) (\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 m^2})^4$$

Dead-cone effect in A+A

W Dai, M Z Li, BWZ, E Wang, arXiv: 2205.14668

$$\frac{\text{kt algorithm}}{d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p})} \frac{\Delta y^2 + \Delta \phi^2}{R^2} \qquad d_{iB} = p_{ti}^{2p}$$

$$R_{ij} = \sqrt{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}$$
 $p = 1$

- Compute d_{ij} and d_{iB} for all particles in the final state, and find the minimum value.
- If the minimum is a d_{iB} , declare particle *i* a jet, remove it from the list, and go back to step one.
- If the minimum is a d_{ij} , combine particles *i* and *j*, and go back to step one.
- Iterate until all particles have been declared jets.

anti-kt and C/A algorithms

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2} \qquad d_{iB} = p_{ti}^{2p}$$

The Cambridge/Aachen algorithm:

• The anti-kt algorithm:

$$p = -1$$

Mean value of emission angle

	Inclusive jets	D^0 jets	
	$\langle heta angle_{ m jets}$	$\langle heta angle_{ m jets}$	
$5-10~{ m GeV}$	0.31	0.34	pp
	0.36	0.36	AA
$10-20~{ m GeV}$	0.40	0.37	pp
	0.45	0.42	AA
$20-35~{ m GeV}$	0.47	0.42	pp
	0.49	0.47	AA

W Dai, M Z Li, BWZ, E Wang, arXiv: 2205.14668

Dead cone effect of heavy quarks

• The b-initiated jets show a significant excess of collinear radiation when compared to the purely vacuum case.

L Cunqueiro, D Napoletano, A Soto-Ontoso, 2211.11789

Heavy-flavor jet yield suppression

 Our calculations give decent descriptions of the inclusive jet and b-jet RAA measured by the ATLAS collaboration.

Sa Wang, Shuang Li, Yao Li, BWZ, Enke Wang, 2410.21834

Angularities of heavy-flavor jets

• The SHELL model can well describe the medium modification of inclusive jet angularities.

Yao Li, Shi-Yong Chen, Weixi Kong, Sa Wang, BWZ, 2409.12742

z_g and R_g of heavy-flavor jet

 Charm quarks undergo fewer perturbative emissions in the parton shower, with a reduced probability of large-angle emissions

ALICE, 2208.04857