Improving the sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh

16-week internship under the supervision of Claude Charlot Laboratoire Leprince-Ringuet (LLR), École polytechnique & IN2P3

Bastien Voirin

Higgs/top performance meeting 2024-07-16

1. The SM Higgs potential $V(\phi) = \mu^2 (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^2$ is not the only possible shape

- 1. The SM Higgs potential $V(\phi) = \mu^2 (\phi^{\dagger} \phi) + \lambda (\phi^{\dagger} \phi)^2$ is not the only possible shape
- 2. In the SM, $\lambda=m_h^2/2v^2$ is fully determined by the
 - + Higgs field VEV $v\approx 246.22\,{\rm GeV}$
 - + Higgs boson mass $m_h \approx 125.1\,{\rm GeV}$

which yield $\lambda\approx 0.129$

- 1. The SM Higgs potential $V(\phi) = \mu^2(\phi^{\dagger}\phi) + \lambda(\phi^{\dagger}\phi)^2$ is not the only possible shape
- 2. In the SM, $\lambda = m_h^2/2v^2$ is fully determined by the
 - Higgs field VEV $v\approx 246.22\,{\rm GeV}$
 - + Higgs boson mass $m_h \approx 125.1\,{\rm GeV}$

which yield $\lambda \approx 0.129$

- 3. λ shows up in the
 - *hhh* (trilinear Higgs boson) self-coupling $\lambda_{hhh}^{\rm SM} = \lambda v = m_h^2/2v$
 - + hhhh (quartic Higgs boson) self-coupling $\lambda_{hhhh}^{\rm SM} = \lambda/4$

- 1. The SM Higgs potential $V(\phi) = \mu^2(\phi^{\dagger}\phi) + \lambda(\phi^{\dagger}\phi)^2$ is not the only possible shape
- 2. In the SM, $\lambda=m_h^2/2v^2$ is fully determined by the
 - Higgs field VEV $v \approx 246.22\,{
 m GeV}$
 - + Higgs boson mass $m_h \approx 125.1\,{\rm GeV}$

which yield $\lambda \approx 0.129$

- 3. λ shows up in the
 - hhh (trilinear Higgs boson) self-coupling $\lambda_{hhh}^{\rm SM} = \lambda v = m_h^2/2v$
 - + hhhh (quartic Higgs boson) self-coupling $\lambda_{hhhh}^{\rm SM} = \lambda/4$

 λ can be measured via Higgs boson pair production involving the trilinear Higgs boson self-coupling at the FCC-hh

Sensitivity of gluon-gluon fusion (ggF) vs. vector boson fusion (VBF) to the trilinear Higgs boson self-coupling

The VBF HH production cross section is known to be more sensitive to the trilinear Higgs boson self-coupling λ "out of the box", but does it hold if we enhance the λ_{hhh} contribution in ggF HH using kinematical cuts?

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 3 / 16

ggF is the dominant HH production mode at the FCC-hh (1224 fb) compared to e.g. VBF (82.8 fb)

ggF is the dominant HH production mode at the FCC-hh (1224 fb) compared to e.g. VBF (82.8 fb)

ggF is the dominant HH production mode at the FCC-hh (**1224 fb**) compared to e.g. VBF (**82.8 fb**)

Higgs-top Yukawa coupling modifier $\kappa_t \equiv y_t/y_t^{SM}$, trilinear Higgs self-coupling modifier $\kappa_\lambda \equiv \lambda_{hhh}/\lambda_{hhh}^{SM}$

$$\sigma^{\rm LO}_{gg \to hh}(\kappa_t, \kappa_{\lambda}) = \kappa_t^4 \sigma^{\rm SM}_{\Box} + 2\kappa_t^3 \kappa_{\lambda} \cos\theta \sqrt{\sigma^{\rm SM}_{\Box} \sigma^{\rm SM}_{\rhd}} + \kappa_t^2 \kappa_{\lambda}^2 \sigma^{\rm SM}_{\rhd} \qquad \theta \equiv \left| \arg(\mathcal{M}_{\rhd}) - \arg(\mathcal{M}_{\Box}) \right|$$

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 4 / 16

ggF is the dominant HH production mode at the FCC-hh (**1224 fb**) compared to e.g. VBF (**82.8 fb**)

Higgs-top Yukawa coupling modifier $\kappa_t \equiv y_t/y_t^{SM}$, trilinear Higgs self-coupling modifier $\kappa_\lambda \equiv \lambda_{hhh}/\lambda_{hhh}^{SM}$

$$\sigma^{\rm LO}_{gg \to hh}(\kappa_t, {\bf k}_{\lambda}) = \kappa_t^4 \sigma^{\rm SM}_{\Box} + 2\kappa_t^3 {\bf k}_{\lambda} \cos\theta \sqrt{\sigma^{\rm SM}_{\Box} \sigma^{\rm SM}_{\rhd}} + \kappa_t^2 \kappa_{\lambda}^2 \sigma^{\rm SM}_{\triangleright} \qquad \qquad \theta \equiv \left| \arg(\mathcal{M}_{\rhd}) - \arg(\mathcal{M}_{\Box}) \right|$$

Highly destructive interference ($\cos \theta \approx -0.89$) \Rightarrow small cross section (only 17.3 fb @ 14 TeV)

Idea: use HH kinematics to improve the sensitivity of the trilinear Higgs self-coupling measurement

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 4 / 16

LO cross sections vs. center-of-mass energy \sqrt{s}

- We use MadGraph5_aMC@NLO to generate $gg \rightarrow hh$ events at the Leading Order
- All 3 contributions to the total cross section steadily increase and keep the same relative ordering (box > |interference| > total > triangle)
- Between 14 TeV and 100 TeV, the total ggF HH production cross section increases from 17.3 fb to 806 fb @ LO and from 36.7 fb to 1224 fb including the available QCD corrections according to the recommendations of the LHC Higgs Cross Section Working Group
- The **interference angle** θ is pretty much **constant** over the 14 TeV to 100 TeV range ($\cos \theta \approx -0.89$)

Kinematic distributions for the two final state Higgs bosons

- Invariant mass m_{hh}
- Transverse momenta $p_{T,h} = \min p_{T,h} = \max p_{T,h}$ (*hh* final state \Rightarrow same p_T @ LO)
- Rapidities y_h, y_{hh}
- Pseudorapidities $\eta_h, \min |\eta_h|, \max |\eta_h|$
- Angular separation $\Delta R_{hh} \equiv \sqrt{\Delta \phi_{hh}^2 + \Delta \eta_{hh}^2}$
- Helicity angle θ^* (between one h in the hh rest frame, and the hh direction)

100 TeV (FCC-hh)

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 7 / 16

14 TeV (HL-LHC)

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 8 / 16

100 TeV (FCC-hh)

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 9 / 16

14 TeV (HL-LHC)

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 10 / 16

Relevance of η coverage up to $|\eta|=5$ (but not beyond) for FCC (100 TeV)

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 11/16

Improving the λ_{hhh} measurement sensitivity using event selections

We'll try to improve the triangle-to-other-contributions (signal-to-background) ratio to increase the variation of $\sigma_{gg \rightarrow hh}^{\text{LO}}$ w.r.t. λ_{hhh} using Toolkit for MultiVariate Analysis (TMVA, now in ROOT)

- Train, test, evaluate a Boosted Decision Tree Input variables are $m_{hh}, \min |\eta_h|, \max |\eta_h|$
- Plot the BDT response histograms (for signal = triangle and background = box)
- Apply the trained BDT to a given dataset (the total ggF HH production), give a score to each event

100 TeV (FCC-hh)

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 13 / 16

14 TeV (HL-LHC)

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 14 / 16

We plot the ratio between $\sigma_{gg \rightarrow hh}^{\text{LO,cut}}(\kappa_t, \kappa_{\lambda})$ and $\sigma_{gg \rightarrow hh}^{\text{LO,SM,cut}}$ (a quadratic function in κ_{λ})

$$\hat{\sigma}(\kappa_{t},\kappa_{\lambda}) = \frac{\kappa_{t}^{4}\sigma_{\Box}^{\mathrm{SM,cut}} + 2\kappa_{t}^{3}\kappa_{\lambda}\cos\theta\sqrt{\sigma_{\Box}^{\mathrm{SM,cut}}\sigma_{\rhd}^{\mathrm{SM,cut}} + \kappa_{t}^{2}\kappa_{\lambda}^{2}\sigma_{\rhd}^{\mathrm{SM,cut}}}{\sigma_{\Box}^{\mathrm{SM,cut}} + 2\cos\theta\sqrt{\sigma_{\Box}^{\mathrm{SM,cut}}\sigma_{\rhd}^{\mathrm{SM,cut}} + \sigma_{\rhd}^{\mathrm{SM,cut}}}$$

for different values of the cut on the BDT response

We plot the ratio between $\sigma_{gg \rightarrow hh}^{\text{LO,cut}}(\kappa_t, \kappa_{\lambda})$ and $\sigma_{gg \rightarrow hh}^{\text{LO,SM,cut}}$ (a quadratic function in κ_{λ})

$$\hat{\sigma}(\kappa_{t},\kappa_{\lambda}) = \frac{\kappa_{t}^{4}\sigma_{\Box}^{\mathrm{SM,cut}} + 2\kappa_{t}^{3}\kappa_{\lambda}\cos\theta\sqrt{\sigma_{\Box}^{\mathrm{SM,cut}}\sigma_{\rhd}^{\mathrm{SM,cut}} + \kappa_{t}^{2}\kappa_{\lambda}^{2}\sigma_{\rhd}^{\mathrm{SM,cut}}}{\sigma_{\Box}^{\mathrm{SM,cut}} + 2\cos\theta\sqrt{\sigma_{\Box}^{\mathrm{SM,cut}}\sigma_{\rhd}^{\mathrm{SM,cut}} + \sigma_{\rhd}^{\mathrm{SM,cut}}}$$

for different values of the cut on the BDT response

- The minimum $-\kappa_t \cos \theta \sqrt{\sigma_{\Box}^{\text{SM,cut}}/\sigma_{\triangleright}^{\text{SM,cut}}}$ shifts towards $\kappa_\lambda \approx 1$ as we reduce the interference
- The plot is sharper and sharper σ is more and more sensitive to κ_{λ}

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh 15 / 16

1. Differential LO cross sections of ggF Higgs boson pair production

Kinematics of ggHH had not been studied so thoroughly before

1. Differential LO cross sections of ggF Higgs boson pair production

Kinematics of ggHH had not been studied so thoroughly before

2. Significant improvement of the sensitivity of the LO gg o hh cross section measurement to the trilinear Higgs boson self-coupling

1. Differential LO cross sections of ggF Higgs boson pair production

Kinematics of ggHH had not been studied so thoroughly before

2. Significant improvement of the sensitivity of the LO gg o hh cross section measurement to the trilinear Higgs boson self-coupling

ggF HH production has a good sensitivity to κ_λ and 15x greater cross section than VBF HH production

1. Differential LO cross sections of ggF Higgs boson pair production

Kinematics of ggHH had not been studied so thoroughly before

2. Significant improvement of the sensitivity of the LO gg o hh cross section measurement to the trilinear Higgs boson self-coupling

ggF HH production has a good sensitivity to κ_λ and 15x greater cross section than VBF HH production

3. This improvement holds when including the $hh o b\overline{b}\gamma\gamma$ decay, parton shower, fragmentation, and detector response simulation (using Delphes) for the HL-LHC

1. Differential LO cross sections of ggF Higgs boson pair production

Kinematics of ggHH had not been studied so thoroughly before

2. Significant improvement of the sensitivity of the LO gg o hh cross section measurement to the trilinear Higgs boson self-coupling

ggF HH production has a good sensitivity to κ_λ and 15x greater cross section than VBF HH production

- 3. This improvement holds when including the $hh o b\overline{b}\gamma\gamma$ decay, parton shower, fragmentation, and detector response simulation (using Delphes) for the HL-LHC
- 4. Next: more thorough/realistic FCC-hh study

14 TeV (HL-LHC) 200 PU

2024-07-16 Sensitivity of the trilinear Higgs boson self-coupling measurement at the (HL-LHC and) FCC-hh