CMS highlights

UPC & Hyperon Polarization

陈震宇 Zhenyu Chen 山东大学 Shandong University

Advances, Innovations, and Prospects in High-Energy Nuclear Physics Wuhan 2024

Ultra-peripheral collisions

CMS has magnificent ability for UPC physics, especially with muons

Hunting down gluon saturation

Growth of gluon density cannot continue indefinitely

Hunting down gluon saturation

Growth of gluon density cannot continue indefinitely Saturation easier to reach with enhanced gluon density in nucleus

Hunting down gluon saturation

Growth of gluon density cannot continue indefinitely Saturation easier to reach with enhanced gluon density in nucleus Photo-produced Vector Meson can test small x gluon density

Photon energy two way ambiguity

Direct separation of low/high energy photon emitter not possible

Photon energy two way ambiguity

Direct separation of low/high energy photon emitter not possible Measured results dominated by large x contributions

Solving the ambiguity

Solving the ambiguity

$$\frac{d\sigma_{AA\to AAJ/\psi}^{0n0n}}{dy} = N_{\gamma/A}^{0n0n}(y) \cdot \sigma_{\gamma A\to J/\psi A'}(y) + N_{\gamma/A}^{0n0n}(-y) \cdot \sigma_{\gamma A\to J/\psi A'}(-y)$$
$$\frac{d\sigma_{AA\to AA'J/\psi}^{0nXn}}{dy} = N_{\gamma/A}^{0nXn}(y) \cdot \sigma_{\gamma A\to J/\psi A'}(y) + N_{\gamma/A}^{0nXn}(-y) \cdot \sigma_{\gamma A\to J/\psi A'}(-y)$$
$$\frac{d\sigma_{AA\to AA'A'J/\psi}^{XnXn}}{dy} = N_{\gamma/A}^{XnXn}(y) \cdot \sigma_{\gamma A\to J/\psi A'}(y) + N_{\gamma/A}^{XnXn}(-y) \cdot \sigma_{\gamma A\to J/\psi A'}(-y)$$

CASIC CLASSVIZ CLASSVIZ

Solving linear simultanous equations with two unknowns.

Solve the following simultaneous equations.

$$-5x + 24y = 150$$

 $2x - 4y = -32$

Press 🖃 to scroll through solutions and input screen.

Photon flux N(y) from theory

$$\sigma_{\gamma A \to J/\psi A'}(-y)$$

 $\sigma_{\rm exp}$

and

$$x = \left(\frac{M_{VM}}{\sqrt{s_{NN}}}\right) e^{\mp y}$$

Entering a new regime of small x~10⁻⁴ – 10⁻⁵ in nuclei

Coherent J/W production vs N_{neutron}

First ever separation in different neutron configuration Leading Twist Approximation cannot fully describe data

Coherent J/ ψ production vs $W_{\gamma N}^{Pb}$

CMS measurement up to 400 GeV, nearly flat at > 40 GeV Evidence of gluon saturation or black disk limit?

Saturation vs black disk

Visible inner structure With Event-by-event fluctuation

Black disk limit

 $\hat{\sigma}_{ ext{POCD}}^{ ext{inel}} \leq \hat{\sigma}_{ ext{black}} = \pi R_{ ext{target}}^2$

L. Frankfurt et al. PRL 87 (2001)192301 L. Frankfurt et al. PLB 537 (2002) 51 Inner structure diminishes No Event-by-event fluctuation

Coherent J/ ψ probes the entire nucleus Incoherent J/ ψ probes inner structure of the nucleus Comparing coherent & incoherent production can help to distinguish

Incoherent J/ ψ production vs N_{neutron}

Neutrons induced by incoherent process help to identify the target nucleus and solve the two-way ambiguity Low-x range down to 6.5 x 10⁻⁵ Leading Twist Approximation cannot fully describe the data

Incoherent J/ ψ production vs $W_{\nu N}^{Pb}$

Incoherent-coherent ratio vs $W_{\nu N}^{Pb}$

Theoretical uncertainties largely cancelled CGC with sub-nucleon fluctuation qualitatively describe data Constant ratio over full energy range disfavors black disk limit 15

Hyperon polarization along beam direction

Simple expectation of vorticity from the anisotropic expansion of QGP

Hyperon polarization along beam direction

Simple expectation of vorticity from the anisotropic expansion of QGP Measured through Lambda polarization: parity violating weak decay

Hyperon polarization along beam direction

Simple expectation of vorticity from the anisotropic expansion of QGP Measured through Lambda polarization: parity violating weak decay The observation of P_{z,s3} indicates the relationship btw geometry & vorticity

"P_z puzzle"?

Contribution from shear induced polarization needed to get the correct sign Calculations depend on the details of shear term implementation

Check in small system!

Features of QGP droplets observed in small but dense systems

Check in small system!

Features of QGP droplets observed in small but dense systems Can we see hyperon polarization P_z there? A test of QGP formation & different contributions to P_z

$P_{z,s2}$ in pPb collision

Significant positive $P_{z,s2}$ observed over entire multiplicity range Consistent results for Λ and anti- Λ Decrease towards high multiplicity

$P_{z,s2}$ in pPb collision

Significant positive $P_{z,s2}$ observed over entire multiplicity range Consistent results for Λ and anti- Λ Decrease towards high multiplicity Increase towards higher p_T – hint of saturation at intermediate p_T

Why is it increasing monotonically towards 0 multiplicity?

Why is it increasing monotonically towards 0 multiplicity? Not consistent with the trend of v_2

Why is it increasing monotonically towards 0 multiplicity? Not consistent with the trend of v₂ Similar to the behavior for peripheral AA; not captured by hydro?

Why is it increasing monotonically towards 0 multiplicity? Not consistent with the trend of v₂ Similar to the behavior for peripheral AA; not captured by hydro? A hydro calculation results in negative Pz

Why is it increasing monotonically towards 0 multiplicity? Not consistent with the trend of v₂ Similar to the behavior for peripheral AA; not captured by hydro? A hydro calculation results in negative Pz

P_{z.s2} from magnetic field?

Transverse polarization of Λ has been a long standing puzzle Recent Belle measurement in e⁺e⁻ shows a significant signal wrt thrust axis

Transverse polarization of Λ has been a long standing puzzle Recent Belle measurement in e⁺e⁻ shows a significant signal wrt thrust axis Projection into x-y plane introduce a P_z wrt thrust axis Thrust axis coincide with 2nd order event plane at low multiplicity Opposite direction than our signal, but could have a z_A dependence Diluted towards high multiplicity

Different contributions vs multiplicity?

A naïve guess of the picture

Different contributions vs multiplicity?

A naïve guess of the picture Where is the switching point and what does it imply for AA? Potential to reveal connections between different physics mechanisms

Summary

CMS Heavy Ion Chinese group is playing leading roles in

- Vector meson production in ultra-peripheral collision
 - Indication of gluon saturation observed
- Hyperon polarization in small system
 - New insights into polarization mechanism

Large PbPb and pPb data sets on the way (2023-2032) Adding PID and pileup rejection with MIP Timing Detector Much more fun results to come!!

Back up

Coherent & incoherent process

$\gamma\gamma \to l^+l^-$

Collision of magnetic fields equivalent to collision of lights

$\gamma\gamma \rightarrow I^+I^- < p_T > puzzle$

Collision of magnetic fields equivalent to collision of lights Increase in p_T of lepton pair towards small impact parameter

$\gamma\gamma \rightarrow I^+I^- < p_T > puzzle$

Collision of magnetic fields equivalent to collision of lights Increase in <p_T> of lepton pair towards small impact parameter Multiple possible explanations

$\gamma \gamma \rightarrow I^+I^- < p_T > puzzle$

Collision of magnetic fields equivalent to collision of lights Increase in <p_T> of lepton pair towards small impact parameter Multiple possible explanations How to distinguish/disentangle them?

Control impact parameter in UPC by N_{neutron}

Impact parameter can be controlled by selecting N_{neutron} Probing b dependence without final state effects

α distribution vs N_{neutron}

 α distribution become broader towards smaller b

$<\alpha > vs N_{neutron}$

 α distribution become broader towards smaller b Strong N_{neutron} dependence of $<\alpha>$ observed

$<\alpha > vs N_{neutron}$

α distribution become broader towards smaller b Strong N_{neutron} dependence of <α> observed Described by a leading order QED calculation Need to be considered before thinking about final state effects