Study of the QCD Phase Structure - Recent Results from RHIC BES Program

Outline

1) Introduction

2) Selected Results

Collectivity

Nu Xu

- Baryon Correlations and Hyper-Nuclei Productions
- > Criticality from BES-II (collider energy $7.7 \le \sqrt{s_{NN}} \le 27 \text{ GeV}$)

3) Summary and Outlook

Nuclear Collisions and QCD Phase Diagram

1) RHIC BES: \rightarrow search for 1st-order phase transition and **QCD critical point**; 2) Baryon interactions (*e.g.* N - N, Y - N) \rightarrow inner structure of compact stars

LGT: QCD Phase Structure

- Large acceptance

eTOF

MTD

EEMC

- Excellent PID & uniform efficiency

STAR DETECTOR SYSTEM

EMC Mag. TPC iTPC

TOF

EPD

- Modest rates

Major Upgrades for BES-II

iTPC:

- \blacktriangleright Improves dE/dx
- > Extends η coverage from 1.0 to 1.6
- \blacktriangleright Lowers p_T cut-in from 125 to 60 MeV/c
- ➤ Ready in 2019

eTOF:

- Forward rapidity coverage
- > PID at $\eta = 0.9$ to 1.6
- **Borrowed from CBM-FAIR**
- ➤ Ready in 2019

EPD:

- Improves trigger
- Better centrality & event plane measurements
- ➢ Ready in 2018

- 1) Enlarge rapidity acceptance
- 2) Improve particle identification
- 3) Enhance centrality/event plane resolution

iTPC: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0619 eTOF: STAR and CBM eTOF group, arXiv: 1609.05102 EPD: J. Adams, et al. NIM <u>A968,</u> 163970 (2020)

STAR Fixed Target Setup

CBM participates in RHIC BES-II in 2019 – 2021:

- ► Complementary to CBM program: $\sqrt{s_{NN}} = 3 7.2 \text{ GeV} (750 \ge \mu_B \ge 420 \text{ MeV})$
- Strange-hadron, hyper-nuclei and fluctuation at the high baryon density region

STAR BES Data Sets

Au+Au Collisions at RHIC												
Collider Runs							Fixed-Target Runs					
	√ S_{NN} (GeV)	#Events	μ_B	Ybeam	run		√ S _{NN} (GeV)	#Events	μ_B	Y _{beam}	run	
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21	
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run-21	
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21	
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20	
5	27	585 M / 220	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20	
6	19.6	595 M/ 270 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20	
7	17.3	256 M / 116 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20	
8	14.6	340 M/ 145 M	262 MeV		Run-14, 19	- 8	45(08)	110 M	500 MeV	1.52	Pup 20	
9	11.5	257 M/ 110 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20	
10	9.2	160 M/ 78 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20	
11	7.7	104 M / 45 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19	
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21	

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

Outline

1) Introduction

2) Selected Results

Collectivity

Nu Xu

- Baryon Correlations and Hyper-Nuclei Productions
- > Criticality from BES-II (collider energy $7.7 \le \sqrt{s_{NN}} \le 27 \text{ GeV}$)

3) Summary and Outlook

STAR FXT and High Baryon Density Region

Kaon Anti-Flow at High Baryon Density Region

STAR: CPOD2024, SQM2024

- 1) A systematic analysis of the p_T dependence of the neutral- and charged-Kaon v₁ from Au+Au collisions at $\sqrt{s_{NN}} = 3.0 - 3.9$ GeV;
- 2) At $p_T < 0.6$ GeV, all mid-rapidity v1 slopes are negative. Kaon potential was proposed to explain the data, ref.[1,2];
- 3) JAM model calculations suggest that spectator shadowing, similar to the case of elliptical v_2 , plays important role for the negative v_1 slope parameter.

→ Spectator shadowing → No Kaon potential is needed

References:

- (1) P. Chung et al. (E895), PRL 85, 940(2000);
- (2) G.-Q. Li, C. M. Ko, and B.-A. Li, PRL <u>74</u>, 235 (1995) and S. Pal, C. M. Ko, Z.-W. Lin, and B. Zhang, PR <u>C62</u>, 061903(2000)

The emergent properties of QCD matter

Baryon Correlations

Baryon Correlation Functions

"Workshop on Advances, Innovations and Future Perspectives in High-Energy Nuclear Collisions", CCNU, Wuhan, October 19 – 24, 2024

p - d, d - d Correlation Functions

p-d, d-d Correlation Functions

- 1) Both p d and d d CFs can be reproduced by calculations of transport model (SMASH) plus coalescence after-burner. Consistent with the coalescence procedure for deuteron production;
- 2) LL calculations are used to extract FSI parameters:
 - $f_0 < 0$ is observed
 - no collision centrality dependence is observed

$p - \Lambda$, $d - \Lambda$ Correlation Functions

Functions 3.0 GeV

- 1) Centrality dependence of the $d \Lambda$ correlation functions from 3.0 GeV Au+Au collisions;
 - 2) For the first time, spin dependent states, *D* and *Q*, identified experimentally!

→ New window for studying 3-body interactions in the laboratory

References:

- (1) J.M. Lattimer and M. Prakash, Science 304, 536 (2004);
- (2) M. Kohno and H. Kamada, arXiv:2406.13899;
- (3) H. W. Hammer, Nucl. Phys. A705, 173 (2002)

"Workshop on Advances, Innovations and Future Perspectives in High-Energy Nuclear Collisions", CCNU, Wuhan, October 19 – 24, 2024 17 / 31

15

d-A C(k*)

Summary: NY Correlations

Herarchy of strangeness content: $f_0(|s|=0) > f_0(|s|=1) > f_0(|s|=2) > 0$ > Interaction section is proportional to f_0^2 , the observation implies that the strength of the ^{0.8}interaction depends on strangeness;

> Important for understanding EOS of the medium in nuclear collisions and compact stars;

^{0.6}In case of $f_0 < 0$, important for the search for di-baryons, such as $p\Omega$

Understand the strangeness hierarchy in QCD calculations?

Reduced

Workshop on Advances, Kinewateons and Hutthe Rerspectives in High-Energy Nuclear Collisions", CCNU, Wuhan, October 19 – 24, 2024 Nu Xu

Search for QCD Critical Point

Precision Measurements of (Net-)Proton Number Fluctuations in Au+Au Collisions at RHIC (STAR Collaboration)

Signal for Critical Point: Non-monotonical energy dependence

M. A. Stephanov, PRL 107 (2011) 052301

Proton Identification at BES-II

BES-II: Centrality Determination

Reference multiplicity measurements RefMult3: TPC measured charge particles except (anti-)protons

1) RefMult3: ($|\eta|$ < 1.0) for both BES-I and BES-II 2) RefMult3X: ($|\eta|$ < 1.6) for BES-II

\rightarrow Larger acceptance \rightarrow larger multiplicity \rightarrow better centrality resolution

Nu Xu

21/31

Net-p from BES-II

- 1) Raw number distributions from BES-II: Uncorrected for detector efficiency;
- 2) Mean increases with decreasing collision energy: Effect of baryon stopping;
- The increase in the width is due to the increase of proton numbers at lower energy

0-5%: C ₄ /C ₂ improvement factor BES-II / BES-I								
7.7	GeV	19.6 GeV						
Stat.	Stat. Syst.		Syst.					
4.7	4.7 3.2		4					
*Embedding statistics increased by a factor of 5!								

STAR: CPOD2024, SQM2024

Conserved Quantities (B, Q, S)

- 1) In strong interactions, baryons (**B**), charges (**Q**) and strangeness (**S**) are conserved;
- 2) Higher order moments/cumulants describe the shape of distributions and quantify fluctuations. They are sensitive to the correlation length ξ , phase structure;
- 3) Direct connection to theoretical calculations of susceptibilities.

Cumulants of Net-p from BES-II

24/31

Net-p Cumulant Ratios

Energy Dependence of Cumulant Ratios

- UrQMD: hadronic transport and the results are analyzed in the same way as data.
 S. Bass *et al.*, Prog. Part. Nucl. Phys., <u>41</u>, 255 (1998);
- 2) HRG CE: P.B. Munzinger et al. Nucl. Phys. A1008, 122141(2021);
- 3) Hydro HRG CE + EV + Collectivity: V. Vovchenko et al., Phys. Rev. C105, 014904 (2022).
- 4) LQCD GCE: done for net-baryon A. Bazavov et al., Phys. Rev. D101, 074502 (2020).

Baryon conservations applied in all model calculations except LQCD!

Deviations from Non-CP Models

Outline

1) Introduction

2) Selected Recent Results

Collectivity

Nu Xu

- Baryon Correlations and Hyper-Nuclei Productions
- > Criticality from BES-II (collider energy $7.7 \le \sqrt{s_{NN}} \le 27 \text{ GeV}$)

3) Summary and Outlook

Summary

(1) Baryon correlations: Hierarchy of strangeness content in f_0 !

(2) Search for QCD critical point:

- BES-II data offered high statistics, better acceptance, centrality resolution and systematic;
- ➢ Known model calculations **Do Not** reproduce the energy dependence ($\sqrt{s_{NN}}$ = 7.7 − 200 GeV)

(3) Outlook:

- (i) Transverse momentum p_T and rapidity scan;
- (ii) Higher orders: C_5 , and C_6 analysis;
- (iii) Complete FXT data analysis at $\sqrt{s_{NN}}$ = 3 3.9 GeV

Future Physics Programs at High μ_B

Future Physics Programs at High μ_B

Key Measurements at CBM Experiment

Acknowledgements:

RHIC and STAR Experiment P. Braun-Munzinger, X. Dong, S. Esumi, *Y. Hu*, F. Karsch, *K. Mi*, V. Koch, XF. Luo, B. Mohanty, *A. Pandav*, A. Rustamov, K. Redlich, M. Stephanov, J. Stachel, J. Stroth, V. Vovchenko, *Y. Zhang*

Thank you for your attention!