

Jet Quenching and Medium Response

Zhong Yang Central China Normal University

Advances, Innovations, and Prospects in High-Energy Nuclear Physics

Wuhan China

Outline

- Introduction
- LBT/CoLBT-hydro model
- Jet-induced medium response
 - Jet-induced diffusion wake
 - 3D structure of diffusion wake
- Summary and Outlook

Introduction

Chun Shen

Looking for and studying QGP are the main programs in high-energy heavy-ion collisions

Jet in heavy-ion collisions

Jet: a collimated cluster of hadrons produced by the fragmentation of high-energy quarks or gluons.

Jet-induced medium response

Energy lost by jet induces medium response which takes the form of Mach-cone-like excitation.

[Casalderrey-Solana, Shuryak, Teaney, 2005; Ruppert, Muller, 2005; Gubser, Pufu, 2008; Qin, Majumder, Song, Heinz, 2009; Yan, Jean, Gale, 2017; ...]

Sensitive to medium properties

Jet-induced medium response

Energy lost by jet induces medium response which takes the form of Mach-cone-like excitation.

[Casalderrey-Solana, Shuryak, Teaney, 2005; Ruppert, Muller, 2005; Gubser, Pufu, 2008; Qin, Majumder, Song, Heinz, 2009; Yan, Jean, Gale, 2017; ...]

Linear Boltzmann Transport(LBT) model

$$p_1 \partial f_1 = -\int dp_2 dp_3 dp_4 (f_1 f_2 - f_3 f_4) \left| M_{12 \to 34} \right|^2 (2\pi)^4 \delta^4 (\sum_i p^i) + inelastic$$

Medium-induced gluon(High-Twist):

[Wang, Guo, 2001]

LBT: Pure pQCD description of parton transport

LBT: jet-induced medium response

Diffusion wake: propagation of negative partons

Medium response: recoil and negative particles

CoLBT-hydro model

- 1. LBT for energetic partons(jet shower)
- 2. Hydrodynamic model for bulk and soft particles: CLVisc
- 3. Sorting partons according to a cut-off parameter p_{cut}^0 (2 GeV) Hard partons: $p\partial f(p) = -C(p)$ $(p \cdot u > p_{cut}^0)$ Soft and negative partons: $j^{\nu} = \sum p_i^{\nu} \delta^{(4)}(x - x_i) \theta(p_{cut}^0 - p \cdot u)$
- 4. Updating medium information by solving the hydrodynamics equation with source term

$$\partial_{\mu}T^{\mu\nu} = j^{\nu}$$

5. The final hadron spectra:

(1) hadronization of hard partons within a parton hadronization model

(2) jet-induced hydro response via Cooper-Frye freeze-out

CoLBT-hydro: Jet-induced medium response

We run model twice with and without jet to subtract hydro background

The Mach-cone-like jet-induced medium response including the diffusion wake is clearly seen in the right panel.

Jet energy loss simulated by CoLBT-hydro

CoLBT-hydro model is an effective model to describe jet energy loss in QGP (RHIC, LHC, single jet and trigger-jet)

Studying of jet-induced medium response

Jet fragmentation function

Jet-induced medium response leads to enhancement of soft hadrons at large angle inside jet

Medium response and soft gluon radiation

Medium response leads to enhancement of soft hadrons along the direction of jet. Medium-induced gluon radiation has the similar effect.

full hydrodynamic response

- 0.24

- 0.16

0.08

0.00

-0.08

-0.16

-0.24

Zhong Y, et al. arXiv:2206.02393

Medium response: $\delta f(p) \sim e^{-p \cdot u/T}$

Medium induced gluon radiations: $\omega \approx \lambda^2 \hat{q}/2 \sim T$ Formation time: $\tau_f = \frac{2\omega}{k_T^2}$ $k_T^2 = \hat{q}\tau_f$ $\tau_f \approx \sqrt{2\omega/\hat{q}}$ Mean-free-path limits the formation time: $\tau_f \leq \lambda \sim 1/T$ $\hat{q} \sim T^3$

Diffusion wake: an unambiguous part of the jet-induced medium response. It can lead to depletion of soft hadrons in the opposite direction of the jet.

3D structure of diffusion wake

Diffusion wake valley(DF-wake valley): a valley is formed on top of the MPI ridge due to the depletion of soft hadrons by jet-induced diffusion wake.

3D structure of diffusion wake

3D structure of diffusion wake

2-Gaussian fitting:
$$F(\Delta \eta) = \int_{\eta_{j1}}^{\eta_{j2}} d\eta_j F_3(\eta_j) (F_2(\Delta \eta, \eta_j) + F_1(\Delta \eta)) \qquad F_1(\Delta \eta) = A_1 e^{-\Delta \eta^2 / \sigma_1^2} F_2(\Delta \eta, \eta_j) = A_2 e^{-(\Delta \eta + \eta_j)^2 / \sigma_2^2}$$

Sensitivity to jet energy loss

Longer propagation length and larger jet energy loss leads to deeper DF-W valley.

The MPI ridge has a very weak and non-monotonic dependence on $x_{j\gamma}$ due to the non-monotonic dependence of the propagation length on $x_{j\gamma}$ for mini-jets from MPI.

Measurement of 3D structure at LHC

ATLAS Jet-hadron correlation

$$Y_{corr} = \frac{1}{N^{\gamma - jet}} \frac{d^2 N^{jet - track}}{d\Delta \eta \Delta \phi}$$

The signal to background ratio is very small(~0.5%).
Consistent with our model prediction.

2. No significant $x_{j\gamma}$ -dependence of the diffusion wake is found.

Measurement of 3D structure at LHC

Summary and Outlook

Summary:

1. Studying of jet-induced medium response can help us understand QGP properties.

2. CoLBT-hydro model is an effective model to study jet quenching and jet-induced medium response.

3. Jet-induced diffusion wake is an unambiguous part of medium response which leads to depletion of hadrons in the opposite direction of jet. CMS finds it

4. The double-peak structure of jet-hadron correlation in rapidity direction is a unique signal of diffusion wake, and it's sensitive to jet energy loss.

Outlook:

1. What the effect of jet quenching and medium response on EECs?

2. Can we distinguish the hadrons from medium response and medium-induced gluon radiation?

Azimuthal distribution of soft hadrons

Sensitivity to shear viscosity

Competition between increased radial flow and negative longitudinal pressure in the shear correction of the energy momentum tensor leads to a a slightly smaller MPI ridge and a deeper DF-wake valley in viscous hydro than in an ideal hydro.

Sensitivity to equation of state

The effective speed of sound is higher in eosq than s95.

High speed of sound ______ a larger Mach cone angle ______ shallower DF-wake valley

a stronger radial flow reduce soft hadrons small MPI ridge