Testing CPT symmetry

High precision mass measurements of multi-strange baryons with ALICE

Romain Schotter, Austrian Academy of Sciences and SMI

ALICE

Advances, Innovations, and Future Perspectives in High-Energy Nuclear Physics 19-24 October 2024

Testing CPT symmetry: why does it (anti-)matter?

Among all the discrete symmetries, only the combined CPT symmetry is an exact symmetry of Nature

- \rightarrow 2 consequences:
- **1. Matter and anti-matter share the same fundamental properties** (mass, lifetime,...)
- 2. Matter and anti-matter exist in equal amounts

 \rightarrow contradiction with astronomical observations

Charge conjugation (C)

Parity transformation (P)

Time reversal (T)

Testing CPT symmetry: why does it (anti-)matter?

Among all the discrete symmetries, only the *combined* <u>CPT symmetry</u> is an exact symmetry of Nature

 \rightarrow 2 consequences:

- **1. Matter and anti-matter share the same fundamental properties** (mass, lifetime,...)
- 2. Matter and anti-matter exist in equal amounts

 \rightarrow contradiction with astronomical observations

Charge conjugation (C) Parity transformation (P) Time reversal (T)

A violation of CPT symmetry could explain the matter/anti-matter imbalance in the Universe

The most stringent *(indirect)* test of the CPT symmetry involves the $K^0-\overline{K}^0$ mixing process

 $|M(K^0) - M(\overline{K}^0)| / M_{avg.} < 6 \times 10^{-19}$ Phys. Rev. D 86, 010001 (2012) $|\Gamma(K^{0}) - \Gamma(\overline{K}^{0})| / \Gamma_{\text{avg.}} = (8 \pm 8) \times 10^{-18}$ <u>Phys. Lett .B 471, 332-338 (1999)</u>

Testing CPT symmetry: why does it (anti-)matter?

Among all the discrete symmetries, only the *combined* <u>CPT symmetry</u> is an exact symmetry of Nature

 \rightarrow 2 consequences:

- **1. Matter and anti-matter share the same fundamental properties** (mass, lifetime,...)
- 2. Matter and anti-matter exist in equal amounts

 \rightarrow contradiction with astronomical observations

Charge conjugation (C) Parity transformation (P) Time reversal (T)

A violation of CPT symmetry could explain the matter/anti-matter imbalance in the Universe

The most stringent *(indirect)* test of the CPT symmetry involves the $K^0-\overline{K}^0$ mixing process

 $|M(\mathbf{K}^{0}) - M(\overline{\mathbf{K}}^{0})| / M_{\text{avg.}} < 6 \times 10^{-19} \qquad |\Gamma(\mathbf{K}^{0}) - \Gamma(\overline{\mathbf{K}}^{0})| / \Gamma_{\text{avg.}} = (8 \pm 8) \times 10^{-18}$ $\underline{Phys. Rev. D 86, 010001 (2012)} \qquad \underline{Phys. Lett .B 471, 332-338 (1999)}$

In the **multi-strange baryon** sector, the **only** mass difference measurements **date back to** $\begin{cases} 18 \text{ years ago} \text{ for } \Xi \\ 26 \text{ years ago} \text{ for } \Omega \end{cases}$ and rely on **small statistics**

$$M(\Xi^{-}) - M(\overline{\Xi}^{+})/M_{\text{avg.}} = (-2.5 \pm 8.7) \times 10^{-5} \qquad M(\Omega^{-}) - M(\overline{\Omega}^{+})/M_{\text{avg.}} = (-1.44 \pm 7.98) \times 10^{-5}$$

Events: 2478(2256) *DELPHI*, *Phys. Lett. B* 639, 179–191 (2006) Events: 6323(2607) *E756*, *Phys. Rev. D* 58, 072002 (1998) 1/15
22/10/2024 Romain Schotter (romain.schotter@cern.ch)

22/10/2024

Precision mass measurement: why does it matter?

- Hadron masses are essential physical ingredients to Lattice QCD (IQCD)
- *Example:* prediction of the anomalous magnetic moment of the muon

$$a_{\mu} = \frac{g_{\mu} - 2}{2} \qquad a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{hadrons}} = 116\ 591\ 810(1)(\underline{40})(18) \times 10^{-11}$$

• **<u>Promising approach</u>**: ab-initio IQCD simulations

 \rightarrow Physical scale is set using 3 hadron *masses* as anchor points: π^{\pm} , K[±] and a **multi-strange baryon** (Ξ or Ω)

Precision mass measurement: why does it matter?

- Hadron masses are essential physical ingredients to Lattice QCD (IQCD)
- *Example:* prediction of the anomalous magnetic moment of the muon

$$a_{\mu} = \frac{g_{\mu} - 2}{2} \qquad a_{\mu}^{\text{SM}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{hadrons}} = 116\ 591\ 810(1)(40)(18) \times 10^{-11}$$

• <u>Promising approach:</u> ab-initio IQCD simulations

 \rightarrow Physical scale is set using 3 hadron *masses* as anchor points: π^{\pm} , K[±] and a **multi-strange baryon** (Ξ or Ω)

18 years ago for Ξ **39 years ago** for Ω

Borsanyi, Fodor, Guenther, et al.

ALICE

In the multi-strange baryon sector, last mass measurements date back to and rely on small statistics

 $M(\Xi^{-}) = 1321.70 \pm (\text{stat.})0.08 \pm (\text{syst.})0.05 \text{ MeV}/c^{2}, \quad \text{Events: } 2478 \\ M(\overline{\Xi}^{+}) = 1321.73 \pm (\text{stat.})0.08 \pm (\text{syst.})0.05 \text{ MeV}/c^{2}, \quad \text{Events: } 2256 \\ DELPHI, Phys. Lett. B 639, 179-191 (2006) \\ 22/10/2024 \\ \text{Romain Schotter (romain. schotter@cern.ch)} \\ M(\Omega^{-}) = 1673 \pm 1 \text{ MeV}/c^{2}, \quad \text{Events: } 100 \\ M(\overline{\Omega}^{+}) = 1672 \pm 1 \text{ MeV}/c^{2}, \quad \text{Events: } 72 \\ \text{Hartouni et al., Phys. Rev. Lett. 54, 628-630 (1985)} 2/15 \\ 22/10/2024 \\ \text{Romain Schotter (romain. schotter@cern.ch)} \\ \end{array}$

Towards more precise values for Ξ^{\pm} and Ω^{\pm}

 Previous mass and mass difference measurements are between 18 to 39 years old, and suffer from limited statistics

→ Reconstructing multi-strange baryons requires *excellent* detection capabilities

• All the data collected during the LHC Run 2 by ALICE in pp at \sqrt{s} = 13 TeV

→ 2 400 000 ($\Xi^{+}\overline{\Xi}^{+}$) and 130 000 ($\Omega^{-}+\overline{\Omega}^{+}$) candidates, with little background

	– Objectives: –
ightarrow unique opportunity to	1. provide new mass measurements of the Ξ^{\pm} and Ω^{\pm} ,
	2. extract mass difference between matter and anti-matter \rightarrow direct test of the CPT symmetry

The ALICE set-up during the LHC Run 2

Dataset and data analysis

All **pp collisions at** \sqrt{s} = 13 TeV, collected during the LHC Run 2, are exploited

\rightarrow 2.2 x 10⁹ minimum-bias events

The Ξ and Ω are studied in their characteristic *cascade* decay channel:

$$\begin{cases} \Xi^- \to \Lambda \pi^- \to p \pi^- \pi^- \\ \overline{\Xi}^+ \to \overline{\Lambda} \pi^+ \to \overline{p} \pi^+ \pi^+ \\ c\tau(\Xi^{\pm}) = 4.91 \text{ cm} \end{cases}$$

$$\begin{cases} \Omega^{-} \to \Lambda \ \mathrm{K}^{-} \to \mathrm{p} \ \pi^{-} \ \mathrm{K}^{-} \\ \overline{\Omega}^{+} \to \overline{\Lambda} \ \mathrm{K}^{+} \to \overline{\mathrm{p}} \ \pi^{+} \ \mathrm{K}^{+} \\ c\tau(\Omega^{\pm}) = 2.461 \ \mathrm{cm} \end{cases}$$

5/15

22/10/2024

Dataset and data analysis

All **pp collisions at** \sqrt{s} = 13 TeV, collected during the LHC Run 2, are exploited

\rightarrow 2.2 x 10⁹ minimum-bias events

The Ξ and Ω are studied in their characteristic *cascade* decay channel:

$$\begin{cases} \Xi^- \to \Lambda \pi^- \to p \pi^- \pi^- \\ \overline{\Xi}^+ \to \overline{\Lambda} \pi^+ \to \overline{p} \pi^+ \pi^+ \\ c\tau(\Xi^{\pm}) = 4.91 \text{ cm} \end{cases}$$

To distinguish the Ξ and Ω from the combinatorial background: \rightarrow **topological reconstruction**

- Selections based on the geometry (vertex position, impact parameters,...) and kinematics (*p*_T, rapidity,...) of the decay
- PID for each decay daughter

 $c\tau(\Omega^{\pm}) = 2.461 \text{ cm}$

 $\begin{cases} \Omega^{-} \to \Lambda \mathrm{K}^{-} \to \mathrm{p} \pi^{-} \mathrm{K}^{-} \\ \overline{\Omega}^{+} \to \overline{\Lambda} \mathrm{K}^{+} \to \overline{\mathrm{p}} \pi^{+} \mathrm{K}^{+} \end{cases}$

These selections have been tuned in order to reach a high level of purity

Mass extraction principle

Statistical identification of Ξ and Ω using an invariant mass analysis

 \rightarrow Invariant mass fit with a triple Gaussian + an exponential functions

- = centre of the inv. mass peak
- = mean of the triple Gaussian functions

Romain Schotter (romain.schotter@cern.ch)

High purity sample (~ 95% for Ξ and ~90% for Ω)

 \rightarrow good control over the background shape

• Topological and track selections

Repeat analysis with 20 000 different set of selections

- **Topological and track selections**
 - **Detector calibration**

Repeat analysis with 20 000 different set of selections

Residual mis-calibration in azimuth between TPC sectors

• p_{T} and opening angles biases

- $p_{\rm T}$ and opening angles biases
- Mass extraction procedure

Dominant

- Topological and track selections
- Detector calibration
- Magnetic field
- Detector material
- p_{T} and opening angles biases
- Mass extraction procedure
- Pile-up treatment

- Topological and track selections
- Detector calibration
- Magnetic field
- Detector material
- *p*_T and opening angles biases
- Mass extraction procedure
- Pile-up treatment
- Precision on the tabulated masses

- Topological and track selections
- Detector calibration
- Magnetic field
- Detector material
- *p*_T and opening angles biases
- Mass extraction procedure
- Pile-up treatment
- Precision on the tabulated masses

• Correction on the extracted mass

Repeat analysis with 20 000 different set of selections

Description of the material budget in simulation

Residual mis-calibration in azimuth between TPC sectors

Precision on the magnetic field map of 0.002 T (out of 0.5 T)

ALICF

Dominant 70-90 keV/c

Validation of the measurements

Validate the measurement using other strange hadrons as standard candles

The Λ , $\overline{\Lambda}$ and K⁰_s masses are known very precisely ($\sigma \sim \text{few keV}/c^2$)

• They can be reconstructed in their **characteristic V0 decay** topology, using topological selections

Decay	Measured mass (MeV/ c^2)	PDG mass (MeV/ c^2)
${ m K}^0_{ m S} ightarrow \pi^+\pi^-$	497.604 ± 0.257	497.611 ± 0.013
$\begin{array}{c} \Lambda \rightarrow \mathrm{p}\pi^{-} \\ \overline{\Lambda} \rightarrow \overline{\mathrm{p}}\pi^{+} \end{array}$	$\begin{array}{l} 1115.775 \pm 0.066 \\ 1115.775 \pm 0.065 \end{array}$	1115.683 ± 0.006

The measured mass of Λ , $\overline{\Lambda}$ and K^{0}_{s} are in **good agreement with PDG values**

Decay	Measured mass difference ($\times 10^{-5}$)	PDG mass difference ($\times 10^{-5}$)			
$\Lambda \rightarrow p\pi^-$	0.02 ± 2.33	0.1 ± 1.1			

Measured mass difference between Λ and $\overline{\Lambda}$ is compatible with 0

22/10/2024

 $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$ $\Lambda \rightarrow p^{+} \pi^{-}$ $\overline{\Lambda} \rightarrow \overline{p}^{-} \pi^{+}$

Final results: **Ξ**[±] mass values

Final results rely on ~30 000 ($\Xi^++\overline{\Xi}^+$) and ~20 000 ($\Omega^-+\overline{\Omega}^+$), with 96% and 90% purities respectively Out of the initial 2 400 000 ($\Xi^-+\overline{\Xi}^+$) and 130 000 ($\Omega^-+\overline{\Omega}^+$) candidates

DELPHI, Phys. Lett. B 639, 179–191 (2006)

 $M(\Xi^{-}) = 1321.70 \pm (\text{stat.})0.08 \pm (\text{syst.})0.05 \text{ MeV}/c^{2}$ $M(\overline{\Xi}^{+}) = 1321.73 \pm (\text{stat.})0.08 \pm (\text{syst.})0.05 \text{ MeV}/c^{2}$

- Precision is **now dominated by** the **systematic uncertainties**
- Improve previous mass measurements by 15% for Ξ

 Ξ⁻ and c.c. masses are 2.5σ (~250 keV/c²) larger than the PDG mass $M(\Xi^{-}) = 1321.975 \pm (\text{stat.})0.026 \pm (\text{syst.})0.078 \text{ MeV}/c^{2}$ $M(\overline{\Xi}^{+}) = 1321.964 \pm (\text{stat.})0.024 \pm (\text{syst.})0.083 \text{ MeV}/c^{2}$

ALICE preliminary

Final results: Ω[±] mass values

Final results rely on ~30 000 ($\Xi^++\overline{\Xi}^+$) and ~20 000 ($\Omega^-+\overline{\Omega}^+$), with 96% and 90% purities respectively Out of the initial 2 400 000 ($\Xi^-+\overline{\Xi}^+$) and 130 000 ($\Omega^-+\overline{\Omega}^+$) candidates

Hartouni et al., <u>Phys. Rev. Lett. 54, 628–630 (1985)</u> $M(\Omega^{-}) = 1673 \pm (\text{tot.})1 \text{ MeV}/c^2$ $M(\overline{\Omega}^{+}) = 1672 \pm (\text{tot.})1 \text{ MeV}/c^2$

- Precision is **now dominated by** the **systematic uncertainties**
- 10-fold improvement on the Ω mass values

 Mass is consistent with the PDG mass

ALICE preliminary

 $M(\Omega^{-}) = 1672.511 \pm (\text{stat.}) 0.033 \pm (\text{syst.}) 0.102 \text{ MeV}/c^{2}$ $M(\overline{\Omega}^{+}) = 1672.555 \pm (\text{stat.}) 0.034 \pm (\text{syst.}) 0.102 \text{ MeV}/c^{2}$

Final results: Ξ^{\pm} and Ω^{\pm} mass difference values

DELPHI (LEP-1), <u>Phys. Lett. B 639, 179–191 (2006)</u> $M(\overline{\Xi}^+) - M(\Xi^-)/M_{\rm avg.} = (2.5 \pm 8.7) \times 10^{-5}$

E756 (Fermilab), <u>Phys. Rev. D 58, 072002 (1998)</u> $M(\overline{\Omega}^+) - M(\Omega^-)/M_{\text{avg.}} = (1.44 \pm 7.98) \times 10^{-5}$ **ALICE** preliminary

ALICE

$$M(\overline{\Xi}^+) - M(\Xi^-)/M_{\text{avg.}} = (-1.45 \pm 6.25) \times 10^{-5}$$

$$M(\overline{\Omega}^+) - M(\Omega^-)/M_{\text{avg.}} = (3.28 \pm 4.47) \times 10^{-5}$$

Conclusion

High-precision mass and mass difference measurements of Ξ^{-} , $\overline{\Xi}^{+}$, Ω^{-} , $\overline{\Omega}^{+}$ have been shown

ALICE preliminary

$$\begin{split} &M(\Xi^{-}) = 1321.975 \pm 0.083 \text{ MeV}/c^{2} \\ &M(\overline{\Xi}^{+}) = 1321.964 \pm 0.087 \text{ MeV}/c^{2} \\ &M(\overline{\Omega}^{-}) = 1672.511 \pm 0.108 \text{ MeV}/c^{2} \\ &M(\overline{\Omega}^{+}) = 1672.555 \pm 0.108 \text{ MeV}/c^{2} \\ \end{split}$$

- Agreement within 2.5 σ of ALICE measurements with previous values
- **15% improvement** and **10-fold improvement** on the *mass values* of Ξ and Ω respectively
- 40% improvement and 2-fold improvement on the mass diff. values of Ξ and Ω respectively
 - \rightarrow World most precise measurements

Outlook: going below the 100 keV/c² precision

- Precision is **dominated by** the systematic uncertainties related to the **detector calibration**
- ALICE

13/15

Help to identify and

eliminate "weak modes"

- If we want to further improve our measurements, we will need more reliable calibrations
 Even more true in LHC Run 3+, where there is little possibility for *a posteriori* corrections
 → an accurate alignment and calibration of the detector is more now crucial than ever
- Possible improvements: exploit physical quantities as further constraints on the alignment/calibration, such as the reconstructed masses of

 $\begin{cases} K_{\rm S}^{0} \rightarrow \pi^{+} \pi^{-} & \text{Like in CMS or ATLAS with } Z^{0} \rightarrow \mu^{+} \mu^{-} [1][2] \\ \Lambda \rightarrow p^{+} \pi^{-} & \text{OR} \\ \overline{\Lambda} \rightarrow \overline{p}^{-} \pi^{+} & \text{in LHCb with } J/\psi \rightarrow \mu^{+} \mu^{-} [3] \end{cases}$

Nucl. Instrum. Methods A 1037 (2022) 166795
 Eur. Phys. J. C 80 (2020) 1194
 LHCb-PROC-2023-001

22/10/2024

22/10/2024

Romain Schotter (romain.schotter@cern.ch)

Outlook: physics consequences of present results

- Present results are **consistent with CPT symmetry**, and further *constrained its validity*
- Lattice QCD (IQCD) uses the Ξ or Ω masses to set the physical scale

-0-

Lattice

R-ratio

Thank you!

Backup slides

Mass extraction principle

Statistical identification of Ξ and Ω using an invariant mass analysis

- = centre of the inv. mass peak
- = mean of the triple Gaussian functions

High purity sample ($\sim 95\%$)

 \rightarrow good control over the background shape

Mass extraction principle

 \rightarrow Invariant mass fit with a triple Gaussian + an exponential functions

- = centre of the inv. mass peak
- = mean of the triple Gaussian functions

High purity sample ($\sim 90\%$)

 \rightarrow good control over the background shape

ALICE

Validation of the mass extraction

The measurement is repeated on *simulated data* (MC) to evaluate the global performance of the mass reconstruction

 \rightarrow compare reconstructed mass and injected mass (= PDG mass).

Decay	$\Xi^- ightarrow \Lambda \pi^-$	$\overline{\Xi}^+ ightarrow \overline{\Lambda} \pi^+$	$\Omega^- \to \Lambda K^-$	$\overline{\Omega}^+ \to \overline{\Lambda} K^+$		
$(\text{In MeV}/c^2)$						
Mass in data	1321.974 ± 0.026	1321.988 ± 0.024	1672.616 ± 0.033	1672.658 ± 0.034	$M_{ m rec.}^{ m data}$	
Mass in MC	1321.709 ± 0.040	1321.734 ± 0.042	1672.555 ± 0.021	1672.550 ± 0.019	$M_{\rm rec.}^{\rm MC}$	
$M - M_{\text{inj.}}$ in MC	-0.001 ± 0.040	0.024 ± 0.042	0.105 ± 0.021	0.100 ± 0.019		
Corrected mass	1321.975 ± 0.026	1321.964 ± 0.024	1672.511 ± 0.033	1672.558 ± 0.034	\checkmark Corrected mass = $M_{\rm re}^{\rm d}$	$_{ m ec.}^{ m lata} - \Delta$

The measured mass **in simulation** does not agree with the *injected mass*

Possible origins:

- data reconstruction
- candidate selections
- mass extraction

Negligible for most measurements, but <u>here:</u>

 \rightarrow Offset in MC should be taken into account in the final results

 $\Delta M = M_{\rm rec.}^{\rm MC} - M_{\rm inj.}$

Corrected mass = $M_{\rm rec.}^{\rm data} - \Delta M$

Stability of the measurement

Check that the results are stable and do not fluctuate over time, space, pT,...

Different dependencies have been investigated:

- Dependence on data taking periods
- Dependence on decay radius
- Dependence on azimuth angle
- Dependence on longitudinal momentum
- Dependence on opening angles
- Dependence on rapidity
- Dependence on multiplicity

In order to ensure a stable measurement,

 \rightarrow focus on the region where a flat dependence is reached.

Stability of the measurement with time

Different dependencies have been investigated:

