HBT correlation in HIC with a hard process (preliminary)

Workshop on Advances, Innovations, and Future Perspectives in High-Energy Nuclear Physics, Wuhan, China

Weiyao Ke, Central China Normal University In collaboration with Zhong Yang, Xin-Nian Wang, De-Xing Zhu October 23, 2024

Medium response to the passage of a parton (jet, heavy quark, etc)

A demonstration using linearized MIS-type hydrodynamics First unambiguous evidence of diffusion wake at HP2024! Compared to simulations.

- Medium response: a natural consequence of jet quenching + medium dynamics.
- Will it tell something about the medium dynamics?

Medium response in the spatial coordinates

- Jet excites QGP at "all" wave-length δ(x) → f(k) = 1. Small perturbations are characterized by linear response functions ⇔ G^{µν}_{αβ} = ⟨T^{µν}(t, x)T_{αβ}(t', x')⟩.
- Kineitc v.s. hydro responses give fairly different spatial strucuters. However, we can only access momentum space, e.g., single-hadron spectra.

Background is a Bjorken flow. **Response** creates some small perturbations ($\delta \ll 1$)

$$\epsilon = \epsilon_0(\tau) + \delta e(\tau, x, y, \eta_s)$$
$$u^{\mu} = u_0^{\mu} + \delta u(\tau, x, y, \eta_s)$$
$$\pi^{\mu\nu} = \pi_0^{\mu\nu} + \delta \pi^{\mu\nu}(\tau, x, y, \eta_s)$$

Study the impact on particle production at freeze out defined by $e(\tau, x, y, \eta_s) = e_f$. Linearize the Cooper-Frye formula:

How are information encoded in one-particle angular distribution? (toy study)

The possible angular structure is quite restricted.

$$\frac{d\delta N}{dm_T dy d\phi} = \frac{p^{\tau} \tau_{\rm frz,0} f_{eq}(\tilde{p}^{\tau})}{(2\pi)^3} \left(N_0 + \tilde{p}_{\mu} N_1^{\mu} + \tilde{p}_{\mu} \tilde{p}_{\nu} N_2^{\mu\nu} + \tilde{p}_{\mu} \tilde{p}_{\nu} \tilde{p}_{\rho} N_3^{\mu\nu\rho}\right) + \mathcal{O}\left(\delta^2\right), \quad \tilde{p}^{\mu} = \frac{p^{\mu}}{T}$$

All information of perturbations are encode in the spatially-integrated coefficients N.

$$\begin{split} \mathsf{N}_{0} &= \int d\mathsf{x} d\mathsf{y} d\eta_{s} \left[c_{s}^{2} \tilde{p}^{\tau} \delta \tilde{\epsilon} + \delta \tilde{\epsilon} - \mathsf{v}^{\eta} \partial_{\eta} \delta \tilde{\epsilon} - \tau_{f} \mathsf{v}_{\perp} \cdot \partial_{\perp} \delta \tilde{\epsilon} \right], \\ \mathsf{N}_{1}^{\mu} &= \int d\mathsf{x} d\mathsf{y} d\eta_{s} \left[-\delta \tilde{g}^{\mu} - \tilde{p}^{\tau} \tilde{\pi}^{\mu\nu} \delta \tilde{g}_{\nu} \right], \\ \mathsf{N}_{2}^{\mu\nu} &= \int d\mathsf{x} d\mathsf{y} d\eta_{s} \left[\frac{1}{2} \tilde{\pi}^{\mu\nu} \left[c_{s}^{2} \tilde{p}^{\tau} \delta \tilde{\epsilon} + \delta \tilde{\epsilon} - \mathsf{v}^{\eta} \partial_{\eta} \delta \tilde{\epsilon} - \tau_{f} \mathsf{v}_{\perp} \cdot \partial_{\perp} \delta \tilde{\epsilon} \right] + \frac{1}{2} \Delta_{\alpha\beta}^{\mu\nu} \delta \tilde{\pi}^{\alpha\beta} \right], \\ \mathsf{N}_{3}^{\mu\nu\rho} &= \int d\mathsf{x} d\mathsf{y} d\eta_{s} \frac{1}{2} \tilde{\pi}^{\mu\nu} (-\delta \tilde{g}^{\rho}) \quad \text{where} \quad \delta \tilde{\epsilon} = \frac{\delta \epsilon}{\epsilon + P}, \quad \delta \tilde{g}^{\mu} = \frac{\delta g^{\mu}}{\epsilon + P} = \delta u^{\mu}. \end{split}$$

No background radial flow, it will be more interesting with radial flow.

- In this toy example, it seems that interested stuff are being integrated out. Energy-momenutm conservation dominates lowest order of the angular structure.
- So how can we access the spatial information in $\delta \epsilon(\tau, x, y, \eta_s)$?

$$\frac{d\delta N}{dm_{T} dy d\phi} = N_{0} + \tilde{p}_{\mu} N_{1}^{\mu} + \tilde{p}_{\mu} \tilde{p}_{\nu} N_{2}^{\mu\nu} + \tilde{p}_{\mu} \tilde{p}_{\nu} \tilde{p}_{\rho} N_{3}^{\mu\nu\rho}$$
$$= C_{00} \left(\tilde{p}^{\tau}\right) + C_{1m} \left(\tilde{p}^{\tau}\right) Y_{1}^{m}(\Omega)$$
$$+ C_{2m} \left(\tilde{p}^{\tau}\right) Y_{2}^{m}(\Omega) + C_{3m} \left(\tilde{p}^{\tau}\right) Y_{3}^{m}(\Omega) + \mathcal{O}(\delta^{2})$$

- In this toy example, it seems that interested stuff are being integrated out.
 Energy-momenutm conservation dominates lowest order of the angular structure.
- So how can we access the spatial information in $\delta \epsilon(\tau, x, y, \eta_s)$?

Hanbury-Brown–Twiss (HBT) correlation and spatial information

• Identical bosons are symmetrized

$$\langle x_1, x_2 | a^{\dagger}_{p_1} a^{\dagger}_{p_2} | 0
angle = rac{e^{i p_1 \cdot x_1 + i p_2 \cdot x_2} + e^{i p_2 \cdot x_1 + i p_1 \cdot x_2}}{\sqrt{2}}$$

• The intensity to observe one or two identical bosons from a system specified by a density matrix $\hat{\rho}$

$$\begin{split} n(p) &= \operatorname{Tr} \left\{ \hat{\rho} \hat{n}_{p} \right\} = \operatorname{Tr} \left\{ \hat{\rho} \hat{a}_{p_{1}}^{\dagger} \hat{a}_{p_{1}} \right\} \\ n(p_{1}, p_{2}) &= \operatorname{Tr} \left\{ \hat{\rho} \hat{n}_{p_{1}} \hat{n}_{p_{2}} \right\} = \operatorname{Tr} \left\{ \hat{\rho} \hat{a}_{p_{1}}^{\dagger} \hat{a}_{p_{1}} \hat{a}_{p_{2}}^{\dagger} \hat{a}_{p_{2}} \right\} \end{split}$$

Earlier focus of HBT measurements

• The two-particle correlation function C(q, K) contains power spectrum of the Fourier transformed freeze-out surface.

Earlier focus of HBT measurements

$$q^{\mu} = p_{1}^{\mu} - p_{2}^{\mu}, \quad K^{\mu} = (K_{1}^{\mu} + K_{2}^{\mu})/2$$

$$S(q, K) = \int d^{4}x F(x, K) e^{iqx}$$

$$= \underbrace{\int_{\Sigma} K \cdot d^{3}\sigma f(x, K) e^{iqx}}_{\text{Production on surface}} \underbrace{+\cdots}_{\text{decays, etc}}$$

$$C\left(\vec{q}, \vec{K}\right) = \frac{N(p_{1}, p_{2})}{N(p_{1})N(p_{2})} \approx 1 + \frac{|S(q, K)|^{2}}{|S(0, K)|^{2}}$$

8

- The two-particle correlation function C(q, K) contains power spectrum of the Fourier transformed freeze-out surface.
- Larger- $q \Leftrightarrow$ finer structures on hypersurface. Study fireball size and inhomogenity.

With a jet passing through, what may change?

- Tuning q, we scan perturbation with $\lambda \sim 1/q$ on the hypersurface.
- Compare C'(q, K) in hard-triggered events vs C(q, K) in events w/o hard trigger.
- Or, to reduce trigger biases, compare C'(q, K) in different directions of \vec{K} .

An interesting poster from QM2015 in Japan

Posterc³ by Naoto Tanaka, University of Tsukuba

Analysis method

If jet modification affects medium shape, azimuthally sensitive HBT should have the oscillation with respect to the leading jet axis.

In HBT analysis, momentum range is very low(p::0.15-2.0 GeV/c). So this analysis will be sensitive not to size of jet itself but to the bulk response and re-distributed hadrons.

Recently **non zero jet v**_2 is observed^[3]. Therefore HBT w.r.t. jet axis will also include Ψ_2 HBT signal.

In order to understand jet modification in source shape, Selecting jet axis w.r.t. $\Psi_2(\Psi_3)$ is important.

*HBT w.r.t. jet axis ①-④, ②-③ should be symmetric about jet axis

Not sure if this was pursued, and what difficulty was found.

But now, we have (partly) the tools to do theoretical estimations.

Status of the theoretical tools

- A. Hadrons produced on the bulk hypersurface.
- B. + C. Resonance decay, jet fragmentation.

We have three types of two-particles correlations

- |A|² Surface-surface correlation, can be treated with Cooper-Frye prescription (√).
- $|B + C|^2$ Jet-jet (like) correlation, and $\mathfrak{Re}(2A^*(B + C))$ Surface-jet correlation.
 - \Rightarrow Maybe can generalize treatments of resonance

decay in [Plumberg, Heinz PRC98(2018)034910] .

W. Chen et al. PRL127(2022)082301,
Y. He et al. Phys. Rev. C 91, 054908,
S. Cao el al. PRC94(2016)014909,
T. Luo et al. PRC109(2024)034919

[W. Chen et al. PLB12(2017)015]

$$\partial_{\mu} T^{\mu\nu} = J^{\nu}, \quad D_{\tau} \pi^{\mu\nu} = \cdots$$

 $J^{\nu} = -\frac{\partial}{\partial t} \int f_{hard}(t, x, p) p^{\nu} \Theta(p \cdot u > E_c) \frac{d^3 p}{(2\pi)^3}$
 $(\partial_t + v \cdot \nabla_x) f_{hard}(t, x, p) = C_{2\leftrightarrow 2} [f_{hard}] + \mathcal{R}_{1\rightarrow 2}^{eff} [f_{hard}]$

Estimate surface-surface HBT correlation from CoLBT

- CoLBT simulation set up (Z. Yang): controlled deposition of energy momentum along a trajectory $dp^{\mu}/dt \propto \delta(\eta_s)\delta(x-t)\delta(y)[1,1,0,0]$.
- For simplicity, we first neglect viscous correction to the Bose-Einstein distribution function $f_{\rm BE}$ at freeze out.
- Consider collinear limit of the pair $|K| \gg |q|$, and focus on the region where $q^{\mu} = (0, q_x, q_y, 0)$ and $\vec{K}_{\perp} \perp \vec{q}_{\perp}$, then

$$S_{\rm surface}(q,K) = \frac{g}{(2\pi)^2} \sum_{t_f,\vec{x_f}} K^{\mu} \sigma_{\mu}(t_f,\vec{x_f}) f_{\rm BE}\left(\frac{K \cdot u_f}{T_{\rm frz}}\right) J_0\left(q_T |\vec{x_f} - \vec{v_K} t_f|\right)$$

Surface-surface correlation from a single event

$$egin{aligned} R(q, \mathcal{K}) &= rac{C_{ ext{with jet}}(q, \mathcal{K})}{C_{ ext{no jet}}(q, \mathcal{K})} \ \pi^+ \pi^+, \quad \mathcal{K} &= 1.5 ext{ GeV}. \end{aligned}$$

- Central Pb+Pb and O+O at LHC.
- Dashed: ideal hydro. Solid: viscous hydro.
- Colors: rotating \vec{K} from 0 (jet direction) to 2π .

 $S(q,K)=S_{bg}+S_{
m pert}$

$$\begin{split} &\propto \sum_{t_f, \vec{x_f}} \mathcal{K}^{\mu} \sigma_{\mu}(t_f, \vec{x}_f) f_{BE} \left(\frac{\mathcal{K} \cdot u}{\mathcal{T}_{\mathrm{frz}}} \right) J_0 \left(q_T \left| \vec{x}_f - \vec{v}_{\mathcal{K}} t_f \right| \right. \\ &+ \sum_{t_f, \vec{x_f}} \mathcal{K}^{\mu} \sigma_{\mu}(t_f, \vec{x}_f) f_{BE}' \frac{\mathcal{K} \cdot \delta u}{\mathcal{T}_{\mathrm{frz}}} J_0 \left(q_T \left| \vec{x}_f - \vec{v}_{\mathcal{K}} t_f \right| \right) \\ &+ \sum_{t_f, \vec{x_f}} \mathcal{K}^{\mu} \delta \sigma_{\mu}(t_f, \vec{x}_f) f_{BE} J_0 \left(q_T \left| \vec{x}_f - \vec{v}_{\mathcal{K}} t_f \right| \right) \end{split}$$

- What determines the sign of correction. *K* parallel/anti-parallel to flow or freeze-out element corrections.
- What tells the q_T location of the peak. Inversely related to |x vt|, whether the jet's trace on the surface is short or long.

How to understand the signal?

1. To consistently include jet-jet and jet-surface correlation.

- Pythia8 has a implementation of Bose-Einstein correlation in Lund-string hadronization (Left).
- Need to combine it with space-time information in medium-modified jet shower. Simulations from D.-X. Zhu
- 2. How to reduce signal cancellation when averaging over jet production vertex.
 - Select events that bias jet production location, e.g. [Z. Yang et al. PJC83(2023)652]
 - Try the back-to-back limit (instead of collinear limit): $K^0 \neq 0, \vec{K} = 0$.

- Is it possible to use the jet-induced medium response phenomena to study the nature of QGP response?
- We need spatial information. HBT correlation may be useful.
- Preliminary studies using CoLBT reveals interesting structure in surface-surface HBT: interplay of direction of flow, jet, and the direction of the pair.
- Need a careful event selection to preserve a large signal.
- Need to estimate jet-jet and jet-surface HBT correlations.
- Need more discussion and feedback on the feasibility!