

Collectivity from the STAR BES program

Shusu Shi

Central China Normal University

Workshop on Advances, Innovations, and Future Perspectives in High-Energy Nuclear Physics, Oct. 19-24, 2024

Outline

> Motivation

Experimental Setup

Results and Discussions

Summary

Motivation

A. Bzdak et al. Phys. Rept. 853, 1 (2010); X. Luo, S. Shi, Nu Xu and Y. Zhang. Particle 3, 278 (2020)

Anisotropic Flow

*v*₁ is sensitive to the Equation-of-State (EoS)
 *v*₂ is sensitive the degree of freedom: partonic vs. hadronic

S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998)

Motivation: Anti-flow of v₁

➢ Bounce-off: Positive flow in positive rapidity
 ➢ Au+Au 3.83 GeV: Anti-flow of kaon at low pT (< 0.7 GeV/c) → Kaon potential?

Motivation: Elliptic Flow

STAR, Phys. Rev. Lett. 110, 142301 (2013) Phys. Rev. C 93, 14907 (2016), Phys. Lett. B 827, 137003 (2022)

Experimental Setup

Au+Au Collisions at RHIC												
Collider Runs						Fixed-Target Runs						
	√ S_{NN} (GeV)	#Events	μ_B	Y _{beam}	run		√ S _{NN} (GeV)	#Events	μ_B	<i>Y_{beam}</i>	run	
1	200	380 M	25 MeV	5.3	Run-10, 19	1	13.7 (100)	50 M	280 MeV	-2.69	Run-21	
2	62.4	46 M	75 MeV		Run-10	2	11.5 (70)	50 M	320 MeV	-2.51	Run- <mark>21</mark>	
3	54.4	1200 M	85 MeV		Run-17	3	9.2 (44.5)	50 M	370 MeV	-2.28	Run-21	
4	39	86 M	112 MeV		Run-10	4	7.7 (31.2)	260 M	420 MeV	-2.1	Run-18, 19, 20	
5	27	585 M	156 MeV	3.36	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	-2.02	Run-18, 20	
6	19.6	595 M	206 MeV	3.1	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	1.87	Run-20	
7	17.3	256 M	230 MeV		Run-21	7	5.2 (13.5)	100 M	540 MeV	-1.68	Run-20	
8	14.6	340 M	262 MeV		Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	-1.52	Run-20	
9	11.5	57 M	316 MeV		Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	-1.37	Run-20	
10	9.2	160 M	372 MeV		Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	-1.2	Run-20	
11	7.7	104 M	420 MeV		Run-21	11	3.2 (4.59)	200 M	699 MeV	-1.13	Run-19	
						12	3.0 (3.85)	260 + 2000 M	760 MeV	-1.05	Run-18, 21	

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 760 > \mu_B > 25 \text{ MeV}$

Particle Identification

Au+Au (GeV)	3.0	3.2	3.5	3.9	4.5
Baryon chemical potential (~MeV)	750	700	670	635	590
Events analyzed (M)	260	206	107	94	128

Good particle identification capability based on TPC dE/dx and TOF m²

A. Banerjee, I. Kisel and M. Zyzak, Int. J. Mod. Phys. A 35, 2043003 (2020)

Rapidity Dependence of v₁

STAR: CPOD2024, SQM2024

Measurements of v1 vs. rapidity for π^{\pm} , K^{\pm} , K^{0}_{S} , p, Λ at 3.0, 3.2, 3.5, and 3.9 GeV

Anti-flow of Kaons

>3.9 GeV: anti-flow observed for K⁰_S at pT < 0.7 GeV/c
> Positive directed flow slope of K⁰_S at pT > 0.7 GeV/c
Strong p_T dependence of K⁰_S v1 slope

p_T Dependence of v₁ Slope

STAR: CPOD2024, SQM2024

Anti-flow of π^+ and K_S^0 , K^{\pm} at low pt

➢Anti-flow could be explained by shadowing effect from spectators

Model study: Z. Liu and S. Shi, Phys. Rev. C 110, 034903 (2024)

Energy Dependence of v₁ Slope

≻v₁ slope of baryons drops as collision energy increases

➢JAM with baryonic Mean Field better describes data

Mean field potential plays important role

Anisotropic Flow

p_T Dependence of v_2 at 3 - 4.5 GeV (③ 羊牛師範太琴

➢ JAM + baryonic Mean Field better describe the 3.2 GeV while underestimate 4.5 GeV data

Baryonic Mean Field: p dependent Soft EoS, the nuclear incompressibility K = 210 MeV

- > At 3 GeV, the measured midrapidity v_2 for all particles are negative and NCQ scaling is absent
- Equation-of-State dominated by baryonic interactions
 - \rightarrow The hadronic degree of freedom dominates

NCQ scaling of v_2 at 3 - 4.5 GeV

- ➢ NCQ scaling completely breaks below 3.2 GeV
- ➢ NCQ scaling becomes better gradually from 3 .2 to 4.5 GeV

Energy dependence of <v₂>

Negative to positive flow: $3 \rightarrow 4.5 \text{ GeV}$

The NCQ-scaled v_2 ratio of p/K⁺ is close to 1 at 3.9 and 4.5 GeV, while it deviates largely from 1 at 3.2 GeV

Summary

- Anti-flow for K_S^0 , K^{\pm} and π^+ observed at low pT (≤ 0.6 GeV/c)
 - > Shadowing effect is important:

anti-flow is not unique to the presence of a kaon potential

- NCQ scaling breaks at 3.0 and 3.2 GeV, and gradually restores from 3.0 to 4.5 GeV
 - > Shadowing effect diminishes
 - > Dominance of partonic interactions at 4.5 GeV

Outlook

- ➢ Higher statistics, better detector performance and more energy points in BES-II
- Explore the QCD phase diagram

Stay tuned for more new results!

Thank you!